Norm estimates and integral kernel estimates for a bounded operator in Sobolev spaces

By Yoichi Miyazaki

School of Dentistry, Nihon University, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
(Communicated by Masaki Kashiwara, M.J.A., Nov. 14, 2011)

Abstract

We show that a bounded linear operator from the Sobolev space $W_{r}^{-m}(\Omega)$ to $W_{r}^{m}(\Omega)$ is a bounded operator from $L_{p}(\Omega)$ to $L_{q}(\Omega)$, and estimate the operator norm, if $p, q, r \in[1, \infty]$ and a positive integer m satisfy certain conditions, where Ω is a domain in \mathbf{R}^{n}. We also deal with a bounded linear operator from $W_{p^{\prime}}^{-m}(\Omega)$ to $W_{p}^{m}(\Omega)$ with $p^{\prime}=p /(p-1)$, which has a bounded and continuous integral kernel. The results for these operators are applied to strongly elliptic operators.

Key words: Sobolev space; kernel theorem; Sobolev embedding theorem; elliptic operator.

1. Introduction. In $[2,3]$ we developed the L_{p} theory for elliptic operators in divergence form subject to the Dirichlet boundary condition. Let A be the $2 m$ th-order elliptic operator

$$
\begin{align*}
A u(x) & =\sum_{\substack{|\alpha| \leq m \\
|\beta| \leq m}} D^{\alpha}\left(a_{\alpha \beta}(x) D^{\beta} u(x)\right) \tag{1.1}\\
D & =-\sqrt{-1} \partial
\end{align*}
$$

in a domain Ω of \mathbf{R}^{n}. One of the main results is that, for each $p \in(1, \infty)$, the inverse of $A-\lambda$ is a bounded linear operator

$$
(A-\lambda)^{-1}: W_{p}^{-m}(\Omega) \rightarrow W_{p, 0}^{m}(\Omega)
$$

for λ in a suitable region of the complex plane \mathbf{C}, and that it satisfies

$$
\begin{equation*}
\left\|(A-\lambda)^{-1}\right\|_{W_{p}^{-i}(\Omega) \rightarrow W_{p}^{j}(\Omega)} \leq C|\lambda|^{-1+(i+j) / 2 m} \tag{1.2}
\end{equation*}
$$

for $0 \leq i \leq m, 0 \leq j \leq m$ with some constant C. We also derived estimates for the kernels of $e^{-t A}$ and $(A-\lambda)^{-1}$, based on (1.2). However, we used (1.2) only for $i=0$. The aim of this paper is to present two theorems which are useful for making a full use of (1.2) including the case $0<$ $i \leq m$.

Throughout this paper, we assume that Ω is \mathbf{R}^{n} or a uniform C^{1} domain if $n \geq 2$, and that Ω is an interval in \mathbf{R} if $n=1$. For $p \in(1, \infty)$ and $s \in \mathbf{R}$ we

[^0]denote by $W_{p}^{s}(\Omega)$ the L_{p} Sobolev space of order s, and by $W_{p, 0}^{s}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W_{p}^{s}(\Omega)$. In particular, if $s=-k$ with a positive integer k, the space $W_{p}^{-k}(\Omega)$ is the set of all functions u which are written as
\[

$$
\begin{equation*}
u=\sum_{|\alpha| \leq k} \partial^{\alpha} u_{\alpha}, \quad u_{\alpha} \in L_{p}(\Omega) \tag{1.3}
\end{equation*}
$$

\]

and the norm $\|u\|_{W_{p}^{-k}(\Omega)}$ is equivalent to

$$
\inf \sum_{|\alpha| \leq k}\left\|u_{\alpha}\right\|_{L_{p}(\Omega)}
$$

where the infimum is taken over all $\left\{u_{\alpha}\right\}_{|\alpha| \leq k}$ satisfying (1.3).

Theorem 1. Let $1 \leq p<r<q \leq \infty$, $p^{-1}-$ $r^{-1} \leq m / n$ and $r^{-1}-q^{-1} \leq m / n$. In addition, let $p^{-1}-r^{-1}<m / n$ if $p=1$, and let $r^{-1}-q^{-1}<m / n$ if $q=\infty$. Assume that T is a bounded linear operator from $W_{r}^{-m}(\Omega)$ to $W_{r}^{m}(\Omega)$. Then the following statements hold with

$$
\theta=(n / m)\left(p^{-1}-r^{-1}\right), \quad \eta=(n / m)\left(r^{-1}-q^{-1}\right)
$$

(i) T is a bounded operator from $L_{p}(\Omega)$ to $L_{q}(\Omega)$ and

$$
\begin{aligned}
& \qquad\|T\|_{L_{p}(\Omega) \rightarrow L_{q}(\Omega)} \\
& \leq C\|T\|_{L_{r}(\Omega) \rightarrow L_{r}(\Omega)}^{(1-\theta)(1-\eta)}\|T\|_{W_{r}^{-m}(\Omega) \rightarrow L_{r}(\Omega)}^{\theta(1-\eta)} \\
& \quad \times\|T\|_{L_{r}(\Omega) \rightarrow W_{r}^{m}(\Omega)}^{(1-\theta)}\|T\|_{W_{r}^{-m}(\Omega) \rightarrow W_{r}^{m}(\Omega)}^{\theta \eta} \\
& \text { with } C=
\end{aligned}
$$

(ii) T is a bounded operator from $L_{p}(\Omega)$ to $W_{r}^{m}(\Omega)$ and

$$
\begin{aligned}
& \|T\|_{L_{p}(\Omega) \rightarrow W_{r}^{j}(\Omega)} \\
& \quad \leq C\|T\|_{L_{r}(\Omega) \rightarrow W_{r}^{j}(\Omega)}^{1-\theta}\|T\|_{W_{r}^{-m} \rightarrow W_{r}^{j}(\Omega)}^{\theta}
\end{aligned}
$$

for $0 \leq j \leq m$ with $C=C(n, m, p, r, \Omega)$.
(iii) T is a bounded operator from $W_{r}^{-m}(\Omega)$ to $L_{q}(\Omega)$ and

$$
\begin{aligned}
& \|T\|_{W_{r}^{-i}(\Omega) \rightarrow L_{q}(\Omega)} \\
& \quad \leq C\|T\|_{W_{r}^{-i}(\Omega) \rightarrow L_{r}(\Omega)}^{1-\eta}\|T\|_{W_{r}^{-i} \rightarrow W_{r}^{m}(\Omega)}^{\eta}
\end{aligned}
$$

for $0 \leq i \leq m$ with $C=C(n, m, q, r, \Omega)$.
As is well known, a bounded linear operator T from $L_{1}(\Omega)$ to $L_{\infty}(\Omega)$ is written as

$$
T u(x)=\int_{\Omega} K(x, y) u(y) d y, \quad u \in L_{1}(\Omega)
$$

with kernel $K(x, y) \in L_{\infty}(\Omega \times \Omega)$. If T satisfies a stronger condition, we can say more about its kernel. For a function $u(x)$ and $h \in \mathbf{R}^{n}$, we define the operator Δ_{h} by

$$
\begin{aligned}
& \Delta_{h} u(x) \\
& \quad= \begin{cases}u(x+h)-u(x) & (\text { if } x \in \Omega \text { and } x+h \in \Omega), \\
0 & \text { (otherwise). }\end{cases}
\end{aligned}
$$

For a function $K(x, y)$ we write $\Delta_{h}^{(1)}\left(\right.$ resp. $\left.\Delta_{h}^{(2)}\right)$ for Δ_{h} that operates $K(x, y)$ with respect to x (resp. y). Let \mathbf{N} be the set of positive integers, and let $\mathbf{N}_{0}=$ $\mathbf{N} \cup\{0\}$.

Theorem 2. Let $1<p<\infty, \quad m-n / p>0$ and $p^{-1}+\left(p^{\prime}\right)^{-1}=1$. Let $k \in \mathbf{N}_{0}$ and $0<\tau<1$ satisfy $m-n / p \geq k+\tau$. Assume that T is a bounded linear operator from $W_{p^{\prime}}^{-m}(\Omega)$ to $W_{p}^{m}(\Omega)$. Then T is a bounded linear operator from $L_{1}(\Omega)$ to $L_{\infty}(\Omega)$, and the kernel $K(x, y)$ of T is in $C^{k}(\Omega \times \Omega)$. More precisely, for $|\alpha| \leq k$ and $|\beta| \leq k$ the derivatives $\partial_{x}^{\alpha} \partial_{y}^{\beta} K(x, y)$ are continuous and satisfy

$$
\begin{align*}
& \left|\partial_{x}^{\alpha} \partial_{y}^{\beta} K(x, y)\right| \tag{1.4}\\
& \quad \leq \\
& \quad C\|T\|_{L_{p^{\prime}(\Omega)} \rightarrow L_{p}(\Omega)}^{(1-\theta)(1-\eta)}\|T\|_{L_{p^{\prime}}(\Omega) \rightarrow W_{p}^{m}(\Omega)}^{\theta(1-\eta)} \\
& \quad \times\|T\|_{W_{p^{\prime}}^{-m}(\Omega) \rightarrow L_{p}(\Omega)}^{(1-\theta) \eta}\|T\|_{W_{p^{\prime}}^{-m}(\Omega) \rightarrow W_{p}^{m}(\Omega)}^{\theta \eta}
\end{align*}
$$

for $x, y \in \Omega$ with

$$
\begin{equation*}
\theta=\frac{|\alpha|+n p^{-1}}{m}, \quad \eta=\frac{|\beta|+n p^{-1}}{m} \tag{1.5}
\end{equation*}
$$

and $C=C(n, m, p, \Omega)$. Furthermore, the derivatives $\partial_{x}^{\alpha} \partial_{y}^{\beta} K(x, y)$ are Hölder continuous of order τ and satisfy

$$
\begin{align*}
& \left|\left(\Delta_{h}^{(1)}\right)^{a}\left(\Delta_{h}^{(2)}\right)^{b} \partial_{x}^{\alpha} \partial_{y}^{\beta} K(x, y)\right| \tag{1.6}\\
& \quad \leq C|h|^{\tau}\|T\|_{L_{p^{\prime}}(\Omega) \rightarrow L_{p}(\Omega)}^{(1-\theta)(1-\eta)}\|T\|_{L_{p^{\prime}}(\Omega) \rightarrow W_{p}^{m}(\Omega)}^{\theta(1-\eta)} \\
& \quad \times\|T\|_{W_{p^{\prime}}^{-m}(\Omega) \rightarrow L_{p}(\Omega)}^{(1-\theta) \eta}\|T\|_{W_{p^{\prime}}^{-m}(\Omega) \rightarrow W_{p}^{m}(\Omega)}^{\theta \eta}
\end{align*}
$$

for $x, y \in \Omega, h \in \mathbf{R}^{n}$ and $(a, b)=(1,0),(0,1)$ with

$$
\theta=\frac{|\alpha|+a \tau+n p^{-1}}{m}, \quad \eta=\frac{|\beta|+b \tau+n p^{-1}}{m}
$$

and $C=C(n, m, p, \tau, \Omega)$. Here $\left(\Delta_{h}^{(1)}\right)^{0}$ and $\left(\Delta_{h}^{(2)}\right)^{0}$ should be interpreted as the identity.

Remark 3. The estimate (1.4) with $\alpha=\beta=$ 0 is considered to be a generalization of the kernel theorem [1, Lemma 3.2] for $p=2$ to the case $p \neq 2$.
2. Proofs. For the proofs of Theorem 1 and Theorem 2 we use the Sobolev embedding theorem which guarantees the inclusions such as $W_{p}^{m}(\Omega) \subset$ $L_{q}(\Omega), L_{p}(\Omega) \subset W_{q}^{-m}(\Omega)$ and the inequalities for $\|u\|_{L_{q}(\Omega)},\|u\|_{W_{q}^{-m}(\Omega)}$ if p and q satisfy suitable conditions. We need to formulate the embedding $L_{p}(\Omega) \subset W_{q}^{-m}(\Omega)$ more precisely than usual.

Lemma 4. Let $1 \leq p<q \leq \infty$ and $m \geq$ $n\left(p^{-1}-q^{-1}\right)$. In addition, let $m>n\left(p^{-1}-q^{-1}\right)$ if $p=1$ or $q=\infty$.

Let $u \in L_{p}(\Omega)$. Then for any $\lambda>0$ there exist $v_{\alpha} \in L_{q}(\Omega)$ with $|\alpha|=m$ and $w \in L_{q}(\Omega)$ such that u is written as

$$
\begin{equation*}
u=\sum_{|\alpha|=m} \partial^{\alpha} v_{\alpha}+w \tag{2.1}
\end{equation*}
$$

and that

$$
\begin{align*}
& \left\|v_{\alpha}\right\|_{L_{q}(\Omega)} \leq C \lambda^{m-n\left(p^{-1}-q^{-1}\right)}\|u\|_{L_{p}(\Omega)} \tag{2.2}\\
& \|w\|_{L_{q}(\Omega)} \leq C \lambda^{-n\left(p^{-1}-q^{-1}\right)}\|u\|_{L_{p}(\Omega)} \tag{2.3}
\end{align*}
$$

with $C=C(n, m, p, q, \Omega)$.
Proof. We may assume that $\Omega=\mathbf{R}^{n}$, since the case $\Omega \neq \mathbf{R}^{n}$ can be reduced to the case $\Omega=\mathbf{R}^{n}$ by extending $u \in L_{p}(\Omega)$ by zero to \mathbf{R}^{n}.

First we assume that u belongs to the Schwartz space $\mathcal{S}\left(\mathbf{R}^{n}\right)$. It is convenient to use Muramatu's integral formula [5], which expresses a function by its regularization. Let us briefly review it. Choose a function $\rho \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ satisfying $\int_{\mathbf{R}^{n}} \rho(x) d x=1$ and supp $\rho \subset\left\{x \in \mathbf{R}^{n}:|x|<1\right\}$, and set

$$
\begin{gathered}
\varphi(x)=\sum_{|\alpha|<m} \frac{1}{\alpha!} \partial_{x}^{\alpha}\left\{x^{\alpha} \rho(x)\right\}, \\
M(x)=\sum_{|\alpha|=m} M_{\alpha}^{(\alpha)}(x), \quad M_{\alpha}(x)=\frac{m}{\alpha!} x^{\alpha} \rho(x) .
\end{gathered}
$$

Here and in what follows we sometimes write $f^{(\alpha)}$ for the derivative $\partial^{\alpha} f$ of a function $f(x)$. For $t>0$ and a function $f(x)$ we set $f_{t}(x)=t^{-n} f\left(t^{-1} x\right)$. Using the relations $\partial_{t}\left\{\varphi_{t}(x)\right\}=-t^{-1} M_{t}(x)$ and $\lim _{t \rightarrow+0} \varphi_{t} * u(x)=u(x)$, we have

$$
\begin{equation*}
u(x)=\int_{0}^{\lambda} M_{t} * u(x) \frac{d t}{t}+\varphi_{\lambda} * u(x), \quad \lambda>0 \tag{2.4}
\end{equation*}
$$

for $u \in \mathcal{S}\left(\mathbf{R}^{n}\right)$, where the integral is an improper integral, namely, it is the limit of the Riemann integral $\int_{\epsilon}^{\lambda} M_{t} * u(x) t^{-1} d t$ as $\epsilon \rightarrow+0$. In view of $\left(M_{\alpha}^{(\alpha)}\right)_{t}(x)=t^{m} \partial_{x}^{\alpha}\left(M_{\alpha}\right)_{t}(x)$ we see that (2.1) holds with

$$
\begin{aligned}
v_{\alpha}(x) & =\int_{0}^{\lambda}\left(M_{\alpha}\right)_{t} * u(x) t^{m-1} d t \\
w(x) & =\varphi_{\lambda} * u(x)
\end{aligned}
$$

Define $r>1$ by $p^{-1}+r^{-1}=1+q^{-1}$. Then the Young inequality $\|w\|_{L_{q}} \leq\left\|\varphi_{\lambda}\right\|_{L_{r}}\|u\|_{L_{p}}$ and $\left\|\varphi_{\lambda}\right\|_{L_{r}}=\lambda^{-n\left(p^{-1}-q^{-1}\right)}\|\varphi\|_{L_{r}} \quad$ give $\quad(2.3)$. If $\quad m>$ $n\left(p^{-1}-q^{-1}\right)>0$, a similar calculation shows

$$
\left\|v_{\alpha}\right\|_{L_{q}} \leq\left\|M_{\alpha}\right\|_{L_{r}}\|u\|_{L_{p}} \int_{0}^{\lambda} t^{m-n\left(p^{-1}-q^{-1}\right)-1} d t
$$

from which (2.2) follows.
If $m=n\left(p^{-1}-q^{-1}\right)$, which implies $1<p<q<$ ∞ by assumption and therefore $0<m<n$, the change of variables $|x-y| / t=s$ gives

$$
\begin{aligned}
\left|v_{\alpha}(x)\right| \leq & \int_{\mathbf{R}^{n}} d y \int_{0}^{\infty}\left|M_{\alpha}\left(\frac{s(x-y)}{|x-y|}\right)\right| s^{n-m-1} \\
& \times|x-y|^{m-n}|u(y)| d s \\
\leq & C \int_{\mathbf{R}^{n}}|x-y|^{m-n}|u(y)| d y
\end{aligned}
$$

Hence the Hardy-Littlewood-Sobolev inequality yields (2.2).

Next, we consider the general case $u \in L_{p}\left(\mathbf{R}^{n}\right)$. We write T_{α} and S for the maps $u \mapsto v_{\alpha}$ and $u \mapsto w$, respectively, in the proof for the Schwartz function. From the result for the Schwartz function it follows that T_{α} and S, defined on $\mathcal{S}\left(\mathbf{R}^{n}\right)$, extend to bounded linear operators from $L_{p}\left(\mathbf{R}^{n}\right)$ to $L_{q}\left(\mathbf{R}^{n}\right)$. We choose a sequence of functions $\left(u_{j}\right)_{j \in \mathbf{N}}$ in $\mathcal{S}\left(\mathbf{R}^{n}\right)$ that converges to u in $L_{p}\left(\mathbf{R}^{n}\right)$. Then we have

$$
\begin{equation*}
u_{j}=\sum_{|\alpha|=m} \partial^{\alpha} T_{\alpha} u_{j}+S u_{j} . \tag{2.5}
\end{equation*}
$$

Since $T_{\alpha} u_{j} \rightarrow T_{\alpha} u$ and $S u_{j} \rightarrow S u$ in $L_{q}\left(\mathbf{R}^{n}\right)$ as $j \rightarrow \infty$, the right-hand side converges in $W_{q}^{-m}\left(\mathbf{R}^{n}\right)$. Hence (2.1) holds with $v_{\alpha}=T_{\alpha} u$ and
$w=S u$. The inequalities (2.2) and (2.3) follow from the corresponding inequalities for the Schwartz function.

Proof of Theorem 1. In any case, the boundedness of T follows by the Sobolev embedding theorem: $L_{p}(\Omega) \subset W_{r}^{-m}(\Omega)$ and $W_{r}^{m}(\Omega) \subset L_{q}(\Omega)$. So, it remains to evaluate the operator norms.

Let $u \in L_{p}(\Omega)$. By Lemma 4 there exist $v_{\alpha} \in$ $L_{r}(\Omega)$ and $w \in L_{r}(\Omega)$ satisfying (2.1) and the inequalities similar to (2.2), (2.3). Then we have

$$
T u=\sum_{|\alpha|=m} T \partial^{\alpha} v_{\alpha}+T w
$$

which gives

$$
\begin{aligned}
\|T u\|_{W_{r}^{j}} \leq & C\|T\|_{W_{r}^{-m} \rightarrow W_{r}^{j}} \lambda^{m-n\left(p^{-1}-r^{-1}\right)}\|u\|_{L_{p}} \\
& +C\|T\|_{L_{r} \rightarrow W_{r}^{j}} \lambda^{-n\left(p^{-1}-r^{-1}\right)}\|u\|_{L_{p}}
\end{aligned}
$$

for $0 \leq j \leq m$. Minimizing the right-hand side if $m-n\left(p^{-1}-r^{-1}\right)>0$, and letting $\lambda \rightarrow \infty$ if $m-$ $n\left(p^{-1}-r^{-1}\right)=0$, we get

$$
\begin{equation*}
\|T u\|_{W_{r}^{j}} \leq C\|T\|_{L_{r} \rightarrow W_{r}^{j}}^{1-\theta}\|T\|_{W_{r}^{-m} \rightarrow W_{r}^{j}}^{\theta}\|u\|_{L_{p}} . \tag{2.6}
\end{equation*}
$$

This inequality gives the estimate for (ii). The estimate for (iii) follows from the Sobolev inequality

$$
\begin{equation*}
\|f\|_{L_{q}} \leq C\|f\|_{L_{r}}^{1-\eta}\|f\|_{W_{r}^{m}}^{\eta} \tag{2.7}
\end{equation*}
$$

The estimate for (i) follows from (2.6) with $j=0, m$ and (2.7).

Lemma 5. Let $1<p<\infty, \quad 1 / p+1 / p^{\prime}=1$ and $m-n / p>0$. Let $\beta \in \mathbf{N}_{0}^{n}$ and $0<\tau<1$ satisfy $m-n / p \geq|\beta|+\tau$.

Then for $u \in L_{1}\left(\mathbf{R}^{n}\right)$ and $\lambda>0$ there exist $v_{\gamma} \in$ $L_{p^{\prime}}\left(\mathbf{R}^{n}\right)$ with $|\gamma|=m$ and $w \in L_{p^{\prime}}\left(\mathbf{R}^{n}\right)$ such that $\partial^{\beta} u$ is written as

$$
\begin{equation*}
\partial^{\beta} u=\sum_{|\gamma|=m} \partial^{\gamma} v_{\gamma}+w \tag{2.8}
\end{equation*}
$$

and that

$$
\begin{align*}
\left\|v_{\gamma}\right\|_{L_{p^{\prime}}\left(\mathbf{R}^{n}\right)} & \leq C \lambda^{m-|\beta|-n / p}\|u\|_{L_{1}\left(\mathbf{R}^{n}\right)} \tag{2.9}\\
\left.\|w\|_{L_{p^{\prime}}} \mathbf{R}^{n}\right) & \leq C \lambda^{-|\beta|-n / p}\|u\|_{L_{1}\left(\mathbf{R}^{n}\right)} \tag{2.10}
\end{align*}
$$

with $C=C(n, m, p)$. In addition, it holds that

$$
\begin{align*}
\left\|\Delta_{h} v_{\gamma}\right\|_{L_{p^{\prime}}\left(\mathbf{R}^{n}\right)} & \leq C|h|^{\tau} \lambda^{m-|\beta|-n / p-\tau}\|u\|_{L_{1}\left(\mathbf{R}^{n}\right)} \tag{2.11}\\
\left\|\Delta_{h} w\right\|_{L_{p^{\prime}}\left(\mathbf{R}^{n}\right)} & \leq C|h|^{\tau} \lambda^{-|\beta|-n / p-\tau}\|u\|_{L_{1}\left(\mathbf{R}^{n}\right)} \tag{2.12}
\end{align*}
$$

for $h \in \mathbf{R}^{n}$ with $C=C(n, m, p, \tau)$.
Proof. We may assume $u \in \mathcal{S}\left(\mathbf{R}^{n}\right)$ by the same argument as in the proof of Lemma 4, since the maps $u \mapsto v_{\gamma}$ and $u \mapsto w$ which will be constructed
below extend to bounded linear operators from $L_{1}\left(\mathbf{R}^{n}\right)$ to $L_{p^{\prime}}\left(\mathbf{R}^{n}\right)$.

We apply Muramatu's formula (2.4) to $\partial^{\beta} u$, which belongs to $\mathcal{S}\left(\mathbf{R}^{n}\right)$, with in mind that

$$
\left(M_{\alpha}^{(\alpha)}\right)_{t} * \partial^{\beta} u(x)=t^{|\alpha|-|\beta|} \partial_{x}^{\alpha}\left\{\left(M_{\alpha}^{(\beta)}\right)_{t} * u(x)\right\}
$$

Then (2.8) holds with

$$
\begin{aligned}
v_{\gamma}(x) & =\int_{0}^{\lambda}\left(M_{\gamma}^{(\beta)}\right)_{t} * u(x) t^{m-|\beta|-1} d t \\
w(x) & =\lambda^{-|\beta|}\left(\varphi^{(\beta)}\right)_{\lambda} * u(x)
\end{aligned}
$$

Then the same calculation as in the proof of Lemma 4 gives (2.9) and (2.10).

In order to derive (2.11) and (2.12) we note that

$$
\begin{align*}
\left\|\Delta_{h} f_{t}\right\|_{L_{p^{\prime}}} & \leq C(n)\|f\|_{W_{p^{\prime}}^{1}} t^{-n / p} \min \{1,|h| / t\} \tag{2.13}\\
& \leq C(n)\|f\|_{W_{p^{\prime}}^{1}} t^{-n / p}(|h| / t)^{\tau}
\end{align*}
$$

for $f \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ and $f_{t}(x)=t^{-n} f\left(t^{-1} x\right)$ with $t>0$. The first inequality follows from $\left\|\Delta_{h} g\right\|_{L_{p^{\prime}}} \leq 2\|g\|_{L_{p^{\prime}}}$ and $\quad \Delta_{h} g(x)=\int_{0}^{1} \nabla g(x+\theta h) \cdot h d \theta \quad$ with $\quad g=f_{t}$, and the second inequality is a consequence of $\min \{1, s\} \leq s^{\tau}$ for $s>0$.

The second inequality in (2.13) yields (2.12). It also yields (2.11) if $m-n / p>|\beta|+\tau$. If $m-n / p=$ $|\beta|+\tau$, we use the first inequality in (2.13) to get

$$
\begin{aligned}
\left\|\Delta_{h} v_{\gamma}\right\|_{L_{p^{\prime}}} & \leq \int_{0}^{\lambda}\left\|\Delta_{h}\left(M_{\gamma}^{(\beta)}\right)_{t}\right\|_{L_{p^{\prime}}}\|u\|_{L_{1}} t^{m-|\beta|-1} d t \\
& \leq \int_{0}^{\lambda} C \min \{1,|h| / t\} t^{m-n / p-|\beta|-1} d t\|u\|_{L_{1}} \\
& \leq C|h|^{\tau}\|u\|_{L_{1}} \int_{0}^{\infty} \min \left\{1, t^{-1}\right\} t^{\tau-1} d t
\end{aligned}
$$

which gives (2.11).
Proof of Theorem 2. First we assume $\Omega=$ \mathbf{R}^{n}. Let $u \in L_{1}\left(\mathbf{R}^{n}\right)$ and $|\alpha| \leq k,|\beta| \leq k$. Taking into account that $W_{p}^{m}(\Omega) \subset C^{k+\tau}(\Omega)$ by the Sobolev embedding theorem, and using (2.8)-(2.10), we have

$$
\begin{aligned}
\left\|\partial^{\alpha} T \partial^{\beta} u\right\|_{L_{\infty}} \leq & \sum_{|\gamma|=m}\left\|\partial^{\alpha} T\right\|_{W_{p^{\prime}}^{-m} \rightarrow L_{\infty}}\left\|v_{\gamma}\right\|_{L_{p^{\prime}}} \\
& +\left\|\partial^{\alpha} T\right\|_{L_{p^{\prime}} \rightarrow L_{\infty}}\|w\|_{L_{p^{\prime}}} \\
\leq & C\left\|\partial^{\alpha} T\right\|_{W_{p^{\prime}}^{-m} \rightarrow L_{\infty}} \lambda^{m-|\beta|-n / p}\|u\|_{L_{1}} \\
& +C\left\|\partial^{\alpha} T\right\|_{L_{p^{\prime}} \rightarrow L_{\infty}} \lambda^{-|\beta|-n / p}\|u\|_{L_{1}}
\end{aligned}
$$

Minimizing the last expression, we get
(2.14) $\left\|\partial^{\alpha} T \partial^{\beta} u\right\|_{L_{\infty}}$

$$
\leq C\left\|\partial^{\alpha} T\right\|_{L_{p^{\prime}} \rightarrow L_{\infty}}^{1-\eta}\left\|\partial^{\alpha} T\right\|_{W_{p^{\prime}}^{-m} \rightarrow L_{\infty}}^{\eta}\|u\|_{L_{1}}
$$

with $\eta=\left(|\beta|+n p^{-1}\right) / m$. Hence $\partial^{\alpha} T \partial^{\beta}$ is a bounded operator from $L_{1}\left(\mathbf{R}^{n}\right)$ to $L_{\infty}\left(\mathbf{R}^{n}\right)$. We denote by $K^{\alpha \beta}(x, y)$ the kernel of $\partial^{\alpha} T \partial^{\beta}$, and simply write $K(x, y)$ for $K^{\alpha \beta}(x, y)$ with $\alpha=\beta=0$. It is easy to see that $\partial_{x}^{\alpha} \partial_{y}^{\beta} K(x, y)=(-1)^{|\beta|} K^{\alpha \beta}(x, y)$ in the distributional sense. The estimate for $\partial_{x}^{\alpha} \partial_{y}^{\beta} K(x, y)$ follows from (2.14) and the Sobolev inequality

$$
\begin{equation*}
\left\|\partial^{\alpha} f\right\|_{L_{\infty}} \leq C\|f\|_{L_{p}}^{1-\theta}\|f\|_{W_{p}^{m}}^{\theta} \tag{2.15}
\end{equation*}
$$

with $\theta=\left(|\alpha|+n p^{-1}\right) / m$.
In order to show the Hölder continuity of $K^{\alpha \beta}(x, y)$ we consider the operators $\Delta_{h} \partial^{\alpha} T \partial^{\beta}$ and $\partial^{\alpha} T \partial^{\beta} \Delta_{h}$. By the Lebesgue differentiation theorem we know that it is sufficient to obtain the inequalities similar to (1.6) for $\left\|\Delta_{h}^{(1)} K^{\alpha \beta}\right\|_{L_{\infty}}$ and $\left\|\Delta_{h}^{(2)} K^{\alpha \beta}\right\|_{L_{\infty}}$. Since the kernel of $\Delta_{h} \partial^{\alpha} T \partial^{\beta}$ is $\Delta_{h}^{(1)} K^{\alpha \beta}(x, y),(2.14)$ with ∂^{α} replaced by $\Delta_{h} \partial^{\alpha}$ and the Sobolev inequality

$$
\left\|\Delta_{h} \partial^{\alpha} f\right\|_{L_{\infty}} \leq C|h|^{\tau}\|f\|_{L_{p}}^{1-\theta}\|f\|_{W_{p}^{m}}^{\theta}
$$

with $\theta=\left(|\alpha|+\tau+n p^{-1}\right) / m$ yield (1.6) for $(a, b)=$ $(1,0)$.

Noting that $\partial^{\beta} \Delta_{h}=\Delta_{h} \partial^{\beta}$, and using (2.8), (2.11) and (2.12), we have
$\left\|\partial^{\alpha} T \partial^{\beta} \Delta_{h} u\right\|_{L_{\infty}}$

$$
\begin{aligned}
\leq & \sum_{|\gamma|=m}\left\|\partial^{\alpha} T\right\|_{W_{p^{\prime}}^{-m} \rightarrow L_{\infty}}\left\|\Delta_{h} v_{\gamma}\right\|_{L_{p^{\prime}}} \\
& +\left\|\partial^{\alpha} T\right\|_{L_{p^{\prime}} \rightarrow L_{\infty}}\left\|\Delta_{h} w\right\|_{L_{p^{\prime}}} \\
\leq & C|h|^{\tau} \lambda^{m-|\beta|-n / p-\tau}\left\|\partial^{\alpha} T\right\|_{W_{p^{\prime}}^{-m} \rightarrow L_{\infty}}\|u\|_{L_{1}} \\
& +C|h|^{\tau} \lambda^{-|\beta|-n / p-\tau}\left\|\partial^{\alpha} T\right\|_{L_{p^{\prime}} \rightarrow L_{\infty}}\|u\|_{L_{1}} .
\end{aligned}
$$

Minimizing the last expression, we get

$$
\begin{equation*}
\left\|\partial^{\alpha} T \partial^{\beta} \Delta_{h} u\right\|_{L_{\infty}} \tag{2.16}
\end{equation*}
$$

$$
\leq C|h|^{\tau}\left\|\partial^{\alpha} T\right\|_{L_{p^{\prime}} \rightarrow L_{\infty}}^{1-\eta}\left\|\partial^{\alpha} T\right\|_{W_{p^{\prime}}^{-m} \rightarrow L_{\infty}}^{\eta}\|u\|_{L_{1}}
$$

with $\eta=\left(|\beta|+\tau+n p^{-1}\right) / m$. Since the kernel of $\partial^{\alpha} T \partial^{\beta} \Delta_{h}$ is $\Delta_{-h}^{(2)} K^{\alpha \beta}(x, y),(2.15)$ and (2.16) yield (1.6) for $(a, b)=(0,1)$.

We see that $K(x, y) \in C^{k}\left(\mathbf{R}^{n} \times \mathbf{R}^{n}\right)$ from the continuity of $K^{\alpha \beta}(x, y)$ for $|\alpha| \leq k,|\beta| \leq k$.

Next, we consider the case $\Omega \neq \mathbf{R}^{n}$. Let $u \in L_{1}(\Omega)$. Let E be the universal extension operator for the Sobolev spaces on Ω to the corresponding spaces on \mathbf{R}^{n}, and let R be the restriction to Ω. We denote by $\tilde{K}(x, y)$ the kernel of the bounded operator ETR: $W_{p^{\prime}}^{-m}\left(\mathbf{R}^{n}\right) \rightarrow W_{p}^{m}\left(\mathbf{R}^{n}\right)$. We define $E_{0} u$ by $E_{0} u(x)=u(x)$ for $x \in \Omega$ and $E_{0} u(x)=0$ for $x \in \Omega^{c}$. Since $T u=R(E T R) E_{0} u$, the kernel of T is given by $\left.\tilde{K}\right|_{\Omega \times \Omega}$. Hence the case $\Omega \neq \mathbf{R}^{n}$ reduces to the case $\Omega=\mathbf{R}^{n}$.
3. Application. Before applying Theorem 1 and Theorem 2 to the elliptic operator A defined in (1.1), we precisely describe the assumptions on A. We assume that A satisfies the following conditions:
(i) The principal symbol

$$
a(x, \xi)=\sum_{|\alpha|=|\beta|=m} a_{\alpha \beta}(x) \xi^{\alpha+\beta}
$$

of A satisfies the strong ellipticity condition, i.e., there exists $\delta_{A}>0$ such that

$$
\operatorname{Re} a(x, \xi) \geq \delta_{A}|\xi|^{2 m} \quad \text { for } x \in \Omega, \xi \in \mathbf{R}^{n}
$$

(ii) All the coefficients $a_{\alpha \beta}$ are in $L_{\infty}(\Omega)$, and the leading coefficients are uniformly continuous in Ω.
By assumption there exists $\omega_{A} \in[0, \pi / 2)$ such that

$$
|\arg a(x, \xi)| \leq \omega_{A} \quad \text { for } x \in \Omega, \xi \in \mathbf{R}^{n}
$$

For each $p \in(1, \infty)$ the operator A is regarded as a bounded linear operator

$$
W_{p, 0}^{m}(\Omega) \rightarrow W_{p}^{-m}(\Omega) .
$$

For $R>0$ and $\omega \in(0, \pi / 2)$ we set

$$
\Lambda(R, \omega)=\{\lambda \in \mathbf{C}:|\lambda| \geq R, \omega \leq \arg \lambda \leq 2 \pi-\omega\}
$$

Theorem 6. Let $\omega \in\left(\omega_{A}, \pi / 2\right)$ be given. Then there exist $R=R(n, m, \omega, A, \Omega)$ such that the inverse of the operator

$$
A-\lambda: \cup_{1<p<\infty} W_{p, 0}^{m}(\Omega) \rightarrow \cup_{1<p<\infty} W_{p}^{-m}(\Omega)
$$

exists for $\lambda \in \Lambda(R, \omega)$ and that for each $p \in(1, \infty)$ the inverse $(A-\lambda)^{-1}$ is a bounded operator from $W_{p}^{-m}(\Omega)$ to $W_{p, 0}^{m}(\Omega)$ that satisfies

$$
\begin{equation*}
\left\|(A-\lambda)^{-1}\right\|_{W_{p}^{-i}(\Omega) \rightarrow W_{p}^{j}(\Omega)} \leq C|\lambda|^{-1+(i+j) / 2 m} \tag{3.1}
\end{equation*}
$$

for $0 \leq i \leq m, 0 \leq j \leq m$ with $C=C(n, m, p, \omega, A, \Omega)$.
Proof. See [2] for a uniform C^{m+1} domain and [3] for a uniform C^{1} domain.

In [2] we obtained Theorem 6 via the Gaussian estimates for heat kernels and the exponential decay estimates for resolvent kernels from its weak version which is the same as Theorem 6 except that the constant R may depend on p. In the process of obtaining Theorem 6 from its weak version we essentially proved and utilized

$$
\begin{equation*}
\left\|(A-\lambda)^{-1}\right\|_{L_{p}(\Omega) \rightarrow L_{q}(\Omega)} \leq C|\lambda|^{-1+(n / 2 m)\left(p^{-1}-q^{-1}\right)} \tag{3.2}
\end{equation*}
$$

for $1<p<q<\infty$ and $p^{-1}-q^{-1}<m / n$, and

$$
\begin{equation*}
\left\|(A-\lambda)^{-N}\right\|_{L_{1}(\Omega) \rightarrow L_{\infty}(\Omega)} \leq C|\lambda|^{-N+n / 2 m} \tag{3.3}
\end{equation*}
$$

for $N>2+n / m$. Since we used (3.1) only for $i=0$ to derive (3.2) and (3.3), the conditions on p, q and N in (3.2) and (3.3) may be restrictive. Theorem 1 and Theorem 2 enable us to make a full use of (3.1) and relax the conditions on p, q and N, as shown below. The improvement for the conditions on p, q and N is of interest in itself, although it does not improve the statement of Theorem 6.

Corollary 7. Given $\omega \in\left(\omega_{A}, \pi / 2\right)$, let R be the constant in Theorem 6 and let $\lambda \in \Lambda(R, \omega)$.
(i) Let $N \in \mathbf{N}, 1 \leq p<q \leq \infty$ and $p^{-1}-q^{-1} \leq$ $2 m N / n$. In addition, let $p^{-1}-q^{-1}<2 m N / n$ if $p=1$ or $q=\infty$. Then $(A-\lambda)^{-N}$ is a bounded operator from $L_{p}(\Omega)$ to $L_{q}(\Omega)$ and satisfies

$$
\left\|(A-\lambda)^{-N}\right\|_{L_{p}(\Omega) \rightarrow L_{q}(\Omega)} \leq C|\lambda|^{-N+(n / 2 m)\left(p^{-1}-q^{-1}\right)}
$$

with $C=C(n, m, p, q, \omega, N, A, \Omega)$.
(ii) Let $N \in \mathbf{N}, 2 m N>n$, and take $k \in \mathbf{N}_{0}$ and $0<\tau<1$ so that $0 \leq k<m$ and $2 m N \geq$ $n+2(k+\tau)$. Then $(A-\lambda)^{-N}$ is a bounded operator from $L_{1}(\Omega)$ to $L_{\infty}(\Omega)$ and its kernel $G_{\lambda}^{N}(x, y)$ is in $C^{k}(\Omega \times \Omega)$. More precisely, for $\quad|\alpha| \leq k \quad$ and $\quad|\beta| \leq k$ the derivatives $\partial_{x}^{\alpha} \partial_{y}^{\beta} G_{\lambda}^{N}(x, y)$ are continuous and satisfy
(3.4) $\quad\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} G_{\lambda}^{N}(x, y)\right| \leq C_{1}|\lambda|^{-N+(n+|\alpha|+|\beta|) / 2 m}$
for $\quad x, y \in \Omega \quad$ with $\quad C_{1}=C_{1}(n, m, \omega, N, A, \Omega)$. Furthermore, the derivatives $\partial_{x}^{\alpha} \partial_{y}^{\beta} G_{\lambda}^{N}(x, y)$ are Hölder continuous of order τ and satisfy

$$
\begin{align*}
& \text { (3.5) }\left|\Delta_{h}^{(1)} \partial_{x}^{\alpha} \partial_{y}^{\beta} G_{\lambda}^{N}(x, y)\right|+\left|\Delta_{h}^{(2)} \partial_{x}^{\alpha} \partial_{y}^{\beta} G_{\lambda}^{N}(x, y)\right| \tag{3.5}\\
& \leq C_{2}|h|^{\tau}|\lambda|^{-N+(n+|\alpha|+|\beta|+\tau) / 2 m} \\
& \text { for } \quad x, y \in \Omega \quad \text { and } \quad h \in \mathbf{R}^{n} \quad \text { with } \quad C_{2}= \\
& C_{2}(n, m, \omega, \tau, N, A, \Omega) .
\end{align*}
$$

Remark 8. Corollary 7(i) is essentially the same as [4, Lemma 3.4] whose proof is also based on Theorem 6, but heavily relies on the exponential decay estimates for resolvent kernels.

Proof. (i) First let $N=1$. Define r so that $r^{-1}=\left(p^{-1}+q^{-1}\right) / 2$, which implies $p^{-1}-r^{-1} \leq m / n$ and $r^{-1}-q^{-1} \leq m / n$. It also holds that $p^{-1}-$ $r^{-1}<m / n$ and $r^{-1}-q^{-1}<m / n$ if $p=1$ or $q=\infty$. Using Theorem 1(i) and Theorem 6, we see that $(A-\lambda)^{-1}$ is a bounded operator from $L_{p}(\Omega)$ to $L_{q}(\Omega)$ and get, with $\theta=(n / 2 m)\left(p^{-1}-q^{-1}\right)$,

$$
\begin{aligned}
\left\|(A-\lambda)^{-1}\right\|_{L_{p} \rightarrow L_{q}} \leq & C|\lambda|^{-1}\left(|\lambda|^{0}\right)^{(1-\theta)^{2}}\left(|\lambda|^{1 / 2}\right)^{\theta(1-\theta)} \\
& \times\left(|\lambda|^{1 / 2}\right)^{(1-\theta) \theta}\left(|\lambda|^{1}\right)^{\theta^{2}} \\
\leq & C|\lambda|^{-1+\theta}
\end{aligned}
$$

The case $N \geq 2$ is treated by using the result for $N=1$ repeatedly.
(ii) Choose p and a sequence $\left(p_{l}\right)_{l=0}^{N}$ so that $p=$ $p_{0}=p_{1}=2$ if $N=1$, and so that

$$
\begin{gathered}
p /(p-1)=p_{0}<p_{1}<p_{2}<\cdots<p_{N}=p<\infty \\
m-n / p>k \\
p_{0}^{-1}-p_{1}^{-1} \leq m / n, \quad p_{N-1}^{-1}-p_{N}^{-1} \leq m / n \\
p_{l-1}^{-1}-p_{l}^{-1} \leq 2 m / n \quad(2 \leq l \leq N-1)
\end{gathered}
$$

if $N \geq 2$. Evaluating $\left\|(A-\lambda)^{-1}\right\|_{W_{p_{0}^{-i}}^{-i} L_{p_{1}}}, \|(A-$ $\lambda)^{-1} \|_{L_{p_{N-1}} \rightarrow W_{p_{N}}^{j}}$, and $\left\|(A-\lambda)^{-1}\right\|_{L_{p_{l-1}} \rightarrow L_{p_{l}}}$ with $2 \leq l \leq$ $N-1$ by Theorem 1, we see that $(A-\lambda)^{-N}$ is a bounded operator from $W_{p^{\prime}}^{-m}(\Omega)$ to $W_{p}^{m}(\Omega)$ with $p^{\prime}=p /(p-1)$ and get

$$
\begin{aligned}
& \left\|(A-\lambda)^{-N}\right\|_{W_{p^{\prime}}^{-i} \rightarrow W_{p}^{j}} \\
& \quad \leq C|\lambda|^{-N+(i+j) / 2 m+(n / 2 m)\left(\left(p^{\prime}\right)^{-1}-p^{-1}\right)}
\end{aligned}
$$

for $0 \leq i \leq m, 0 \leq j \leq m$. By Theorem 2 we obtain, with θ and η defined in (1.5),

$$
\begin{aligned}
\mid \partial_{x}^{\alpha} & \partial_{y}^{\beta} \\
\leq & G_{\lambda}^{N}(x, y) \mid \\
\leq & C|\lambda|^{-N+(n / 2 m)\left(\left(p^{\prime}\right)^{-1}-p^{-1}\right)}\left(|\lambda|^{0}\right)^{(1-\theta)(1-\eta)} \\
& \times\left(|\lambda|^{1 / 2}\right)^{\theta(1-\eta)}\left(|\lambda|^{1 / 2}\right)^{(1-\theta) \eta}\left(|\lambda|^{1}\right)^{\theta \eta} \\
\leq & C|\lambda|^{-N+(n / 2 m)(1-2 / p)+(\theta+\eta) / 2}
\end{aligned}
$$

which yields (3.4).
Similarly we obtain (3.5) if we replace $m-$ $n / p>k$ by $m-n / p \geq k+\tau$ in the definition of the sequence $\left(p_{l}\right)_{l=0}^{N}$.

Acknowledgment. The author wishes to thank the referee for his/her valuable comments and suggestions.

References

[1] K. Maruo and H. Tanabe, On the asymptotic distribution of eigenvalues of operators associated with strongly elliptic sesquilinear forms, Osaka J. Math. 8 (1971), 323-345.
[2] Y. Miyazaki, The L^{p} theory of divergence form elliptic operators under the Dirichlet condition, J. Differential Equations 215 (2005), no. 2, 320-356.
[3] Y. Miyazaki, Higher order elliptic operators of divergence form in C^{1} or Lipschitz domains, J. Differential Equations 230 (2006), no. 1, 174195.
[4] Y. Miyazaki, Heat asymptotics for Dirichlet elliptic operators with non-smooth coefficients, Asymptot. Anal. 72 (2011), 125-167.
[5] T. Muramatu, On Besov spaces of functions defined in general regions, Publ. Res. Inst. Math. Sci. 6 (1970/71), 515-543.

[^0]: 2010 Mathematics Subject Classification. Primary 46E35; Secondary 35J40.

