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Abstract: We solve a transversality problem relating to Bertelson-Gromov’s ‘‘dynamical

Morse inequality’’.
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1. Introduction. Bertelson-Gromov pro-

posed a study of ‘‘dynamical Morse inequality’’

in [2]. It is a new kind of Morse theory in

(asymptotically) infinite dimensional situations.

The authors think that the paper [2] opened a way

to a fruitful new research area. The purpose of this

paper is to solve a transversality problem relating

to [2].

Let X be a compact connected smooth mani-

fold of dimension � 1, and let f : X �X ! R be

a smooth function. For n ¼ 1; 2; 3; . . . ; we define

SnðfÞ : Xnþ1 ! R by

SnðfÞðx0; x1; . . . ; xnÞ :¼
Xn�1

i¼0

fðxi; xiþ1Þ:ð1Þ

The study of this kind of functions was proposed

by Bertelson-Gromov [2]. (See also Bertelson [1].)

The ‘‘physical’’ meaning of SnðfÞ is as follows.

We consider a crystal which consists of n particles

in a line. Suppose that the state of each particle

is described by the manifold X and that each

particle interacts with the next one by the poten-

tial function fðx; yÞ. Then the critical points of

SnðfÞ correspond to the stationary states of the

crystal.

Let c be a real number, and let � be a positive

real number. We define Nnðc; �Þ as the number of

critical points p of SnðfÞ with c� � < SnðfÞðpÞ=n <
cþ �:

Nnðc; �Þ :¼ ]
�
p 2 Xnþ1 j ðdSnðfÞÞp ¼ 0;

c� � < SnðfÞðpÞ
n

< cþ �
�
:

We set

NðcÞ :¼ lim
�!0

lim inf
n!1

logNnðc; �Þ
n

� �
:

Recall that a smooth function on a manifold is

called a Morse function if all its critical points are

non-degenerate. Bertelson-Gromov [2] proved the

following ‘‘dynamical Morse inequality’’. (See

[2, Remark 8.2] and [1, p. 156, Remark].)

Theorem 1.1 (Bertelson-Gromov). Suppose

the following

All SnðfÞ : Xnþ1 ! R ðn � 1Þð2Þ
are Morse functions:

Then for any c 2 R

NðcÞ � bðcÞ:ð3Þ

Here bðcÞ is the ‘‘Betti-number entropy’’ introduced

in [2]. (bðcÞ depends on f.) We review its definition

in Appendix A.

The function bðcÞ is concave, and there exists

c 2 R such that bðcÞ > 0 [2, Proposition 9.2,

Proposition 10.1].

Theorem 1.1 rises the following natural

question: How common is the condition (2) for

smooth functions? The main issue of this note is to

give an affirmative answer to this question. Notice

that the answer is not apparent because of the

symmetry of the function SnðfÞ. For example, the

value

SnðfÞðx; . . . ; x; y1; . . . ; ym; x; . . . ; xÞ
¼ fðx; y1Þ þ fðym; xÞ þ ðn�m� 1Þfðx; xÞ

þ
Xm�1

i¼1

fðyi; yiþ1Þ
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does not depend on the number of x’s before the

sequence of y1; . . . ; ym appears. So the standard

arguments to show the prevalence of Morse func-

tions (e.g. Guillemin-Pollack [3, Chapter 1,

Section 7], Hirsch [4, Chapter 6, Section 1]) do not

work.

Let C1ðX �XÞ be the space of all (real valued)

C1-functions in X �X. C1ðX �XÞ is endowed with

the topology of C1-convergence. A subset U �
C1ðX �XÞ is said to be residual if it contains a

countable intersection of open dense subsets of

C1ðX �XÞ. The main result of this paper is the

following

Theorem 1.2. The set of all functions f 2
C1ðX �XÞ satisfying the condition (2) is a residual

subset of C1ðX �XÞ.
Let C1s ðX �XÞ be the space of all f 2 C1ðX �

XÞ satisfying the symmetric relation fðx; yÞ ¼
fðy; xÞ for all x; y 2 X. This is a closed subspace of

C1ðX �XÞ. If we consider Xnþ1 as the ‘‘configu-

ration space of a crystal’’ as we explained before,

then it is natural to suppose that the ‘‘potential

function’’ f is symmetric. So we think that the

following result is also interesting.

Theorem 1.3. The set of all functions f 2
C1s ðX �XÞ satisfying (2) is a residual subset of

C1s ðX �XÞ.
2. Proof of Theorems 1.2 and 1.3. In this

section we assume that the closed manifold X is

smoothly embedded into the Euclidean space RN .

For n � 1, let Pn be the set of all partitions of

f0; 1; 2; . . . ; ng. For � ¼ fP1; P2; . . . ; Plg 2 Pn, we set

j�j ¼ l and �ðiÞ ¼ Pj for i 2 Pj, (i ¼ 0; 1; 2; . . . ; n).

For example, if � ¼ ff0g; f1; 3g; f2gg 2 P3, then

j�j ¼ 3 and �ð0Þ ¼ f0g, �ð1Þ ¼ �ð3Þ ¼ f1; 3g,
�ð2Þ ¼ f2g. We define an order on Pn as follows:

For �; � 2 Pn, � � � if we have �ðiÞ � �ðiÞ for all

i ¼ 0; 1; . . . ; n. (This means that � is a subdivision

of � .) The maximum partition with respect to this

ordering is ff0; 1; 2; . . . ; ngg, and the minimum

partition is ff0g; f1g; . . . ; fngg.
For � 2 Pn, we set

X� :¼ fðx0; x1; . . . ; xnÞ 2 Xnþ1 j xi ¼ xj
if �ðiÞ ¼ �ðjÞg;

RN
� :¼ fðv0; v1; . . . ; vnÞ 2 ðRNÞnþ1 j vi ¼ vj

if �ðiÞ ¼ �ðjÞg:

We have X� � RN
� . If � � �, then X� � X� and

RN
� � RN

� . We set

�� :¼
[
���

X� :

Here � runs over all partitions in Pn strictly greater

than �. We have �� � X�.

Remark 2.1. (i) For x ¼ ðx0; x1; . . . ; xnÞ 2
Xnþ1, we have x 2 X� n �� if and only if the

following condition is satisfied: ‘‘xi ¼ xj , �ðiÞ ¼
�ðjÞ’’.
(ii) Xnþ1 ¼

S
�2Pn
ðX� n ��Þ.

(iii) The pair (RN
� ;X�) is diffeomorphic to the

pair (ðRNÞj�j; Xj�j).
For f 2 C1ðX �XÞ, we define SnðfÞ 2

C1ðXnþ1Þ by (1). For each (fixed) n � 1, the set

{f 2 C1ðX �XÞ j SnðfÞ is a Morse function} is

obviously open in C1ðX �XÞ. (A similar statement

for C1s ðX �XÞ is also true.) Hence Theorems 1.2

and 1.3 follow from the following

Theorem 2.2. Fix n � 1. Every f 2 C1ðX �
XÞ can be approximated arbitrarily well (in the C1-

topology) by g 2 C1ðX �XÞ such that SnðgÞ is a

Morse function. Moreover, if f is symmetric (i.e.

fðx; yÞ ¼ fðy; xÞ for all x; y 2 X), then we can choose

a symmetric approximation g.

For a while we will prepare some preliminary

results for proving this theorem. In the rest of this

section we fix n � 1. First recall the following well-

known result (see Guillemin-Pollack [3, p. 43]).

Proposition 2.3. Let M be a closed mani-

fold embedded in Rm, and let f : M ! R be a

smooth function. Fix x0 2 Rm. Then for almost

every � 2 Rm, the function

M 3 x 7! fðxÞ þ h�; x� x0i 2 R

is a Morse function. Here h�; �i is the standard inner

product of Rm.

We will also need the following (well-known,

we believe).

Lemma 2.4. Let M be a closed manifold

embedded in Rm, and let f : M ! R be a smooth

function. Let p ¼ ðp1; . . . ; pmÞ 2M be a critical

point of f. Let a1; . . . ; am be positive numbers.

Then for all but finitely many c 2 R, the point p

is a non-degenerate critical point of the following

function:

gc : M 3 x 7! fðxÞ þ c
Xm
i¼1

aijxi � pij2 2 R:

Proof. First note that the following fact: Let A

and B be two matrices of the same degree, and
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suppose B is regular. Then Aþ cB is also regular for

c� 1. Hence detðAþ cBÞ is not identically zero as

the polynomial of c. So it has only finitely many

zeros. Then Aþ cB is regular for all but finitely

many c 2 R.

We can assume p ¼ 0. Let ’ ¼ ð’1; . . . ; ’mÞ :

Rk !M � Rm (’ð0Þ ¼ 0) be a local coordinate

around 0 2M. We have gc 	 ’ðyÞ ¼ f 	 ’ðyÞ þ
c
Pm

i¼1 aið’iðyÞÞ
2. Then

@2gc 	 ’
@y�@y�

ð0Þ ¼
@2f 	 ’
@y�@y�

ð0Þ þ 2c
Xm
i¼1

ai
@’i

@y�
ð0Þ

@’i

@y�
ð0Þ:

It is easy to see that the symmetric matrix ð
P

i ai �
@’ið0Þ=@y� � @’ið0Þ=@y�Þ�;� is positive definite and

hence regular. Hence the desired result follows from

the above remark. �

For p ¼ ðp0; p1; . . . ; pnÞ 2 Xnþ1, we put

rðpÞ :¼ minfjpi � pjj j pi 6¼ pjg;
Up :¼ fx 2 Xnþ1 j jx � pj < rðpÞ=3g:

When p0 ¼ p1 ¼ � � � ¼ pn, we set rðpÞ ¼ þ1 and

Up ¼ Xnþ1. Let � be a C1-function on R such that

� ¼ 1 on [0; 1=3] and � ¼ 0 on [2=3;þ1). For p ¼
ðp0; p1; . . . ; pnÞ 2 Xnþ1 and j ¼ 0; 1; . . . ; n, we set

�p;jðxÞ :¼ �ðjx� pjj=rðpÞÞ for x 2 X. If p0 ¼ p1 ¼
� � � ¼ pn, then we set �p;j 
 1.

Lemma 2.5. Let � 2 Pn. For p 2 X� n ��

and x ¼ ðx0; x1; . . . ; xnÞ 2 Up,

�p;jðxiÞ ¼
1 if �ðiÞ ¼ �ðjÞ,
0 if �ðiÞ 6¼ �ðjÞ.

�

Proof. If �ðiÞ ¼ �ðjÞ, then pi ¼ pj. So jxi �
pjj ¼ jxi � pij � jx � pj < rðpÞ=3. If �ðiÞ 6¼ �ðjÞ,
then pi 6¼ pj. So jxi � pjj � jpi � pjj � jxi � pij �
2rðpÞ=3. �

For i ¼ 0; 1; 2; . . . ; n, we set

�ðiÞ ¼ 1 i ¼ 0; n,

2 otherwise.

�

Lemma 2.6. Let � 2 Pn, p ¼ ðp0; p1; . . . ;
pnÞ 2 X� n �� and � ¼ ð�0; �1; . . . ; �nÞ 2 RN

� . Then

there is a symmetric fp;� 2 C1ðX �XÞ such that

Snðfp;�ÞðxÞ ¼ h�;x � pi for all x 2 Up \X�.

Proof. We define h 2 C1ðXÞ by

hðxÞ :¼
Xn
j¼0

X
k2�ðjÞ

�ðkÞ

0
@

1
A
�1

h�j; �p;jðxÞðx� pjÞi:

Put fp;�ðx; yÞ :¼ hðxÞ þ hðyÞ. For x ¼ ðx0; x1; . . . ;
xnÞ 2 Up \X�,

Snðfp;�ÞðxÞ

¼
Xn�1

i¼0

ðhðxiÞ þ hðxiþ1ÞÞ ¼
Xn
i¼0

�ðiÞhðxiÞ

¼
X

0�i;j�n
�ðiÞ

X
k2�ðjÞ

�ðkÞ

8<
:

9=
;
�1

h�j; �p;jðxiÞðxi � pjÞi

¼
Xn
j¼0

X
k2�ðjÞ

�ðkÞ

0
@

1
A
�1 X

i2�ðjÞ
�ðiÞh�j; xj � pji

0
@

1
A

ðby Lemma 2.5 and xi ¼ xj for i 2 �ðjÞÞ

¼
Xn
j¼0

h�j; xj � pji ¼ h�;x � pi:

�

Lemma 2.7. For p ¼ ðp0; p1; . . . ; pnÞ 2 Xnþ1,

there is a symmetric gp 2 C1ðX �XÞ such that

SnðgpÞðxÞ ¼
Pn

i¼0 �ðiÞjxi � pij
2 for all x ¼ ðx0; . . . ;

xnÞ 2 Up.

Proof. Choose � 2 Pn such that p 2 X� n ��.

We define h 2 C1ðXÞ by

hðxÞ :¼
Xn
j¼0

�p;jðxÞ
]�ðjÞ

jx� pjj2:

Set gpðx; yÞ :¼ hðxÞ þ hðyÞ. For x ¼ ðx0; x1; . . . ;

xnÞ 2 Up,

SnðgpÞðxÞ

¼
Xn�1

i¼0

ðhðxiÞ þ hðxiþ1ÞÞ ¼
Xn
i¼0

�ðiÞhðxiÞ

¼
X

0�i;j�n
�ðiÞ

�p;jðxiÞ
]�ðjÞ jxi � pjj

2

¼
Xn
i¼0

�ðiÞ
X
j2�ðiÞ

1

]�ðiÞ
jxi � pjj2 ðby Lemma 2.5Þ

¼
Xn
i¼0

�ðiÞjxi � pij2 ðpj ¼ pi for j 2 �ðiÞÞ:

�

Let M be a manifold, and let f : M ! R be a

smooth function. We define CðfÞ as the set of all

critical points of f , and C�ðfÞ as the set of all

degenerate critical points of f .

Lemma 2.8. Let � 2 Pn, and let K � X�

be a compact set. Let f 2 C1ðX �XÞ. Suppose

C�ðSnðfÞjX�
Þ \K ¼ ;. Then f can be approximated

arbitrarily well by g 2 C1ðX �XÞ such that

C�ðSnðgÞÞ \K ¼ ;. If f is symmetric, then we can

choose a symmetric approximation g.
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Proof. All critical points of SnðfÞjX�
in K are

isolated in X�. In particular CðSnðfÞjX�
Þ \K is a

finite set. Since C�ðSnðfÞÞ \K is contained in

CðSnðfÞjX�
Þ \K, C�ðSnðfÞÞ \K is also finite. We

prove the lemma by the induction on l :¼
]ðC�ðSnðfÞÞ \KÞ.

The case l ¼ 0 is trivial. Suppose C�ðSnðfÞÞ \
K ¼ fp1;p2; . . . ;plg. There are open subsets V1; . . . ;
Vl of X� such that pi 2 Vi, CðSnðfÞjX�

Þ \ V i ¼ fpig
(i ¼ 1; . . . ; l) and V i \ V j ¼ ; (i 6¼ j). Since non-

degenerate critical points are persistent, there is

a neighborhood U of f in C1ðX �XÞ such that for

all g 2 U
(i) C�ðSnðgÞÞ \K �

Sl
i¼1 Vi,

(ii) ]ðCðSnðgÞjX�
Þ \ ViÞ ¼ 1 for i ¼ 1; . . . ; l. (Then,

]ðCðSnðgÞÞ \ ViÞ � 1.)

Take c > 0 such that f þ cgp1
2 U (gp1

is the

function given in Lemma 2.7.) and that p1 is a non-

degenerate critical point of the following function

Xnþ1 ! R:

x 7! SnðfÞðxÞ þ c
Xn
j¼0

�ðjÞjxj � p1;jj2
 !

;

where p1 ¼ ðp1;0; p1;1; . . . ; p1;nÞ. (The latter condition

is satisfied for all but finitely many c 2 R by

Lemma 2.4.) Put g1 :¼ f þ cgp1
. From Lemma 2.7,

for x ¼ ðx0; . . . ; xnÞ 2 Up1
,

Snðg1ÞðxÞ ¼ SnðfÞðxÞ þ c
Xn
j¼0

�ðjÞjxj � p1;jj2
 !

:

By the choice of g1 2 U, p1 is the unique

critical point of Snðg1Þ in V1 (see the above

condition (ii)), and it is non-degenerate. Therefore

we have C�ðSnðg1ÞÞ \K �
Sl
i¼2 Vi. This implies

]ðC�ðSnðg1ÞÞ \KÞ � l� 1. By the assumption of

induction, g1 can be approximated by g 2 C1ðX �
XÞ such that C�ðSnðgÞÞ \K ¼ ;. If f is symmetric,

then g1 is also symmetric and we can choose a

symmetric approximation g. �

Proposition 2.9. Let � 2 Pn and f 2
C1ðX �XÞ. Suppose C�ðSnðfÞÞ \ �� ¼ ;. Then f

can be approximated arbitrarily well by f 0 2 C1ðX �
XÞ such that C�ðSnðf 0ÞÞ \X� ¼ ;. If f is symmetric,

then we can choose a symmetric approximation f 0.
Proof. Since �� is compact and C�ðSnðfÞÞ \

�� ¼ ;, there is an open set W0 � X� such that

�� � W0 and W 0 \ C�ðSnðfÞÞ ¼ ;. Take p1; . . . ;pk 2
X� n �� and open sets V1; . . . ; Vk � X� such that

pi 2 Vi, V i � Upi and X� ¼W0 [
Sk
i¼1 Vi. Put

f0 :¼ f and Wi :¼W0 [
Si
j¼1 Vj for i ¼ 1; . . . ; k.

We will inductively show that if fi 2 C1ðX �
XÞ satisfies C�ðSnðfiÞÞ \Wi ¼ ; then fi can be

approximated by fiþ1 2 C1ðX �XÞ satisfying

C�ðSnðfiþ1ÞÞ \Wiþ1 ¼ ;. (If fi is symmetric, then

we can choose fiþ1 symmetric.) Since C�ðSnðf0ÞÞ \
W 0 ¼ ; and X� ¼ W0 [

Sk
i¼1 Vi, this will complete

the proof.

Let e1; . . . ; em be the standard basis of RN
�

(m ¼ Nj�j). By Proposition 2.3, for a.e. ðc1; . . . ;

cmÞ 2 Rm, the following is a Morse function.

RN
� � X� 3 xð4Þ

7! SnðfiÞðxÞ þ
Xm
j¼1

cjej;x � piþ1

* +
2 R:

Take small ðc1; . . . ; cmÞ 2 Rm such that (4) is a

Morse function. Put gi :¼ fi þ
Pm

j¼1 cjfpiþ1;ej .

(fpiþ1;ej is the function introduced in Lemma 2.6.)

Then SnðgiÞðxÞ ¼ SnðfiÞðxÞ þ h
Pm

j¼1 cjej;x � piþ1i
for x 2 Upiþ1

\X�. This implies C�ðSnðgiÞjX�
Þ \

V iþ1 ¼ ;. By Lemma 2.8, gi can be approximated

by fiþ1 satisfying C�ðSnðfiþ1ÞÞ \ V iþ1 ¼ ;.
Since C�ðSnðfiÞÞ \Wi ¼ ; by the assumption, if

we choose (c1; . . . ; cm) sufficiently small and fiþ1

sufficiently close to gi then C�ðSnðfiþ1ÞÞ \Wi ¼ ;.
Thus we have C�ðSnðfiþ1ÞÞ \Wiþ1 ¼ ;. �

Proof of Theorem 2.2. Set f0 :¼ f . We

will inductively construct fi below. Let Pn ¼
f�1; �2; . . . ; �mg (m ¼ jPnj), and we can assume

that these are indexed so that �i � �j ) i � j. If

fi 2 C1ðX �XÞ satisfies C�ðSnðfiÞÞ \ ð
S
j�i X�jÞ ¼

;, then by Proposition 2.9, fi can be approximated

by fiþ1 2 C1ðX �XÞ satisfying C�ðSnðfiþ1ÞÞ \
X�iþ1

¼ ;. We can choose fiþ1 sufficiently close

to fi so that C�ðSnðfiþ1ÞÞ \ ð
S
j�i X�jÞ ¼ ;. Hence

C�ðSnðfiþ1ÞÞ \ ð
S
j�iþ1 X�jÞ ¼ ;. By induction f ¼

f0 can be approximated by fm 2 C1ðX �XÞ sat-

isfying C�ðSnðfmÞÞ ¼ ;. If f is symmetric, then we

can choose all fi symmetric. �

Appendix A. Review of Betti-number

entropy. In this appendix we review the defi-

nition of Betti-number entropy introduced by

Bertelson-Gromov [2]. All results in this appendix

are contained in [2].

Let M be a compact connected smooth mani-

fold. If M is oriented, then we use cohomology over

R. If M is unoriented, then we use cohomology over

Z=2Z. Let a 2 H�ðMÞ :¼
L

k�0 H
kðMÞ, and let U �

M be an open subset. We write supp a � U if there

exists an open subset V �M such that M ¼ U [ V
and ajV ¼ 0 in H�ðV Þ [2, Notation 4.1].
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Let X be a compact connected smooth mani-

fold of dimension � 1. Let f : X �X ! R be a

smooth function. For n � 1 we define SnðfÞ :

Xnþ1 ! R as in (1), and set fn :¼ SnðfÞ=n. Let

	n : Xnþ1 ! Xn, ðx0; . . . ; xnÞ 7! ðx0; . . . ; xn�1Þ. For

an open set U � Xnþ1 we define a subspace AnðUÞ �
H�ðXnþ1Þ as the set of a 2 	�nðH�ðXnÞÞ satisfying

supp a � U. For c 2 R and � > 0, consider the

following linear map:

Anðf�1
n ð�1; cþ �ÞÞ ! HomðAnðf�1

n ðc� �;þ1ÞÞ;
Anðf�1

n ðc� �; cþ �ÞÞÞ;
a 7! ðb 7! a [ bÞ:

We define bnðc; �Þ as the rank of this linear map.

Lemma A.1 ([2], Lemma 5.1). For c; c0 2 R

and � > 0,

bnþmð�cþ ð1� �Þc0; �Þ � bnðc; �Þbmðc0; �Þ

for � ¼ n=ðnþmÞ.
Then we can define the Betti-number entropy

bðcÞ by

bðcÞ :¼ lim
�!0

lim
n!1

log bnðc; �Þ
n

� �
:
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