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Abstract:

For a fixed prime [ € Z, we consider zeta functions for certain types of (not

necessarily commutative) algebras over the completion Q; of Q and show that they satisfy
several properties analogous to those of the usual Hasse-Weil zeta function of an algebraic variety

over a finite field.
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1. Introduction. The starting point of non-
commutative geometry is the replacement of topo-
logical spaces by (not necessarily commutative) C*-
algebras (see [1]). It follows that, given a smooth
scheme X over Spec(Z), we can associate to X a
manifold X(C) over C and hence the commutative
C*-algebra C*(X(C)) of complex valued continuous
functions on X(C). In this paper, we consider
certain not necessarily commutative algebras over
a completion Q; of Q (I € Z being a given prime)
that enjoy several properties associated to schemes
over finite fields. We refer to these objects as “Q;-
algebras”.

The zeta function of an algebraic variety over
a finite field has been extended naturally to several
more general settings (see, for instance, Deitmar-
Koyama-Kurokawa [2], Deitmar [3], Kurokawa [6,8]
or Kurokawa-Wakayama [7]). For Qj-algebras
with certain additional data (see Definition 2.3),
we introduce a zeta function that extends the usual
Hasse-Weil zeta function on an algebraic variety
over a finite field. Further, we develop appropriate
functional equations for these zeta functions and
also verify that they are rational functions over Q.
We also extend classical results such as the
Lefschetz fixed point formula to this context.

2. Qyj-algebras. Throughout this paper, let
p € Z denote a fixed prime and let [ = p be a prime
different from p. We note that the involution on a
usual C*-algebra may be seen as an action of the
group Gal(C/R). This suggests that a “Q;-algebra”
should carry an action of the Galois group
Gal(F,/F,), where F, denotes the algebraic closure
of F,,. Then, we define:
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Zeta functions; l-adic cohomology.

Definition 2.1. Let! € Z be a fixed prime in
Z, different from p. A @Q)j-algebra consists of a (not
necessarily unital) graded Q-algebra H = & H'
satisfying the following two properties:

(a) Each H', i > 0 is a finite dimensional Q,-vector
space.

(b) Each H', i >0 carries a Q-linear action of
the group Gal(F,/F,) which is compatible with
the graded algebra structure on H, i.e., for any
o € Gal(F,/F,), Vx € H', y € H’, i,j > 0, we have
o(z)-o(y) = oz -y).

The category of @);-algebras will be denoted by
Algqg:. Let Sm/F, denote the category of smooth
projective schemes over F,.

Proposition 2.2. The category Algg: of Q-
algebras is a monoidal category. Further, there
exists a monoidal functor

Q; : Sm/F, — AngT

that associates to each object X of Sm/F, a graded
commutative Q;-algebra.

Proof. Let H= & H' and H = &XH" be
two given Q;-algebras. Then, H ®q, H' is clearly a
graded Q;-algebra such that each

(H ®Q7 H/)i — @jJrj’:iHj ®Q1 H/j/

is a finite dimensional Q;-vector space. The group
Gal(F,/F,) also acts on each (H ®q, H')' via the
diagonal action compatible with the product struc-
ture on H ®q, H'. Hence, (H ®q, H') is also a Q-
algebra.

Further, given any smooth projective scheme
X over Spec(F,), we let X denote the fibre product

X X spee(r,) Spec(Fp). Then, we define
Q(X) == H'(X, Q)
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Then, Q}(X):=@2,Q;(X)" becomes a graded
commutative algebra under the cup product on
l-adic cohomologies and carries a natural action
of Gal(F,/F,) induced by the natural action of
Gal(F,/F,) on X. Moreover, for any smooth
projective schemes X, Y over F), we have
Qi(X xY) = H(X xY,Q)

(X, Ql) ®q, H’ (Y Q)

= ®j17-iQ) (X) ®q, Q[ (Y )
by Kiinneth theorem for l-adic cohomologies. It
follows that @] is a symmetric monoidal functor.

We will now exhibit several natural examples
of Qj-algebras.

Examples: (1) Proposition 2.2 shows that to

each smooth projective scheme X over F,,, we can
associate a natural graded commutative @j-alge-
bra, which we have denoted by Q;(X).
(2) Let X be a smooth projective scheme over F,
and define H = & H' by setting H' := H'(X,Q,)
as in the proof of Proposition 2.2. Let T : H =
EBioiOHi — H = EBinHi be a Q-linear operator
of degree 0 that commutes with the action of
Gal(F,/F,) (for instance, we could take T to be any
linear combination of elements of Gal(F,/F,), since
Gal(F,/F,) = Z is abelian). Then, we can define a
multiplicative structure on H by setting

Ty:=2zUT(y)

where » € H' = H(X,Q,), y € H = H/(X,Q,) for
all 4, 7 € Z and U denotes the usual cup product map
on l-adic cohomologies. Then, H carries the struc-
ture of a graded algebra and o(z) -7 o(y) = o(z -1 y).
We will denote this Q;-algebra by QF (X).

(3) More generally, suppose that A is any finite
dimensional algebra over Q; with an action of
Gal(F,/F,). Then, we consider the universal
algebra Q(A) of A, defined as follows (see, for
instance, [5]): let A denote the algebra obtained by
adjoining a unit to A (even if A is already unital)
and set

> @y H

Q'(A) ;= A A%,

The action of Gal(F,/F,) on A can be extended to
QI(A) by setting o((ag+A-1)®a;®...Qa)=
(c(ag) + A 1) ®o0o(a) ®...®o(a;)) for all ag,...a; €
A. Then, it is clear that Q(A4) = &2 Q' (A) is a Q-
algebra in the sense of Definition 2.1.

Definition 2.3. Let n >0 be a given inte-
ger. By a cycle of dimension n, we will mean a pair
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(H, [) consisting of a Qj-algebra H = @ H' such
that H' =0 for all i >n and a linear functional
[ H" — Q.

A cycle (H, [) of dimension n will be said to be
smooth if: (a) the composition

J

H ®q H""' — H" - Q
is a perfect pairing of Q;-vector spaces for all 0 <
i < nand (b) the Kernel of [ is invariant under the
action of Gal(F,/F,), i.e., for any o € Gal(F,/F,),
we have o(Ker([)) C Ker(f).

We conclude this section by giving natural
examples of smooth cycles (H, [):
(1) For any smooth and projective scheme X over
F, of dimension d and for any Q-linear auto-
morphism T on @2 H(X,Q;) of degree 0 that
commutes with the action of Gal(F,/F,), Poincare
duality

H'(X,Q) ®q, H*(X,q) 2 B*(X,Q)

= qQ

enables us to define a smooth cycle (Q;(X), fX ) of
dimension 2d. For instance, we could choose T to be
an element of Gal(F,/F,) itself.

(2) Let K be a field extension of Q; and let f:
K — Q, denote a nonzero Q-linear functional on
K. Let V be an n-dimensional K-vector space with
a K-linear action of Gal(F,/F,) and let E=
{e1,e2,...,e,} be a basis for V. We choose an
isomorphism ip : A"V — K by takinge; A....Ae,
to1l € K. Let k> 0 and choose some v € A*V, v # 0.
Then v may be expressed as a finite sum v =
> ai,. iy N...Ne, where each a;  ; € K and
(i1,...,1) varies over all tuples 1 < i) < iy <...<
i, <n. Let ¢ € K be such that f(¢) # 0 and choose a
tuple 1 <4} < i) < ... <1, <nsuch that ai i, # 0.
Then there exists {j1,...,Jn—k} such that
{if, iU, et ={1,2,...,n}. It fol-
lows that the composition

AkV ®Q[ An—kV N AkV ®K An—kV N
v =k -Lq
ip

carries v®c- a,l_,ele .Nej . to Ef(e) #0.
Hence, for each 0 < k < n, the composition above
determines a perfect pairing of Q-vector spaces.
Further, if we assume that for each o € Gal(F,/F,),
the determinant det(o) € Q; (where o is considered
as a K-linear automorphism on V), it follows that
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the data (92 A"V, foip) determines a smooth
cycle of dimension n.

3. Zeta functions of cycles. In this sec-
tion, we will associate a zeta function to each n-
dimensional smooth cycle (H, [) and show that it
satisfies several properties analogous to the (Hasse-
Weil) zeta functions of varieties over F,,.

Definition 3.1. Let (H, [) be an n-dimen-
sional cycle and let F' denote the Frobenius element
of Gal(F,/F,). For any k > 0, we set

Hfz

=0
Let z denote an indeterminate. Then, the zeta
z) is defined as the formal series:

YTr(F* . H — HY)

function Cu N (

00 k
C(HJ’)(Z) = exp(Z Ni(H, f)k> .
k=1

Proposition 3.2.
jective scheme over F, of dimension d. Then, we
have Cx(z) :<<Q7(X>’fx)’ where (x(z) denotes the
Hasse-Weil zeta function associated to X.

Proof. For any ¢ >0, by definition, the @Qj-
algebra Q7 (X) is given by Qi (X)" := H'(X,Q,) and
[y H*(X,Q;) — Q; is defined by the isomor-
phism H?(X,Q,) = Q,. Then, the result follows
directly from the well known Lefschetz fixed point
formula. (|

Let (H, [) and (H', [") be cycles of dimensions
n and n' respectively. Then, we can define a
“product cycle” (H® H', [® [') of dimension n +
n' by setting

(Jef)eso= ()] )

for all we H", ' € H™.

Additionally, if (H, [) is smooth, we have
o(Ker([)) C Ker([) for each o € Gal(F,/F,) and
J is a Q-linear functional on H". Hence, for each
o € Gal(F,/F,), there exists a scalar )\J(H, ) eq
such that we have

fa(w):)‘a(va)'fw

Proposition 3.3. (a) Let (H, [) and (H', [")
be cycles of dimensions n and n' respectively. Then,
for any k>0, we have Ny(H@H, [® [) =
Nu(H, [)) - Nul(E', ).

(b) If (H,[) and H’,f’) are smooth cycles of
dzmenszons n and n' respectively, so is the product
cycle (HO H', [® [').

Let X be a smooth, pro-

Ywe H"
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Proof. (a) We choose any k> 0. Then, by
definition

Nk((H® H/af”)

n+n'

= X (C)Tr(F (H e HY) — (Ho 1Y)

_ 7:2/(_1)2‘ 3 TR T )

-5 X (TP - (1Y D)
_ <l§(:)(—1)lTr(Fk|H’)) : (é(—l)”Tr(F’“IH’”)>

= Ny(H, [)- Ny(H', [

(b) For any 0<i<n+n', we know that (H®
H') :=®j j—iH' @ HY. Then, it is clear that
the linear functional [@ [":(H® HY"™ — Q,
defined by

(Je)eso=(]<)(])

forallw € H", o' € H™ composed with the product on
H ® H' defines a perfect pairing of (H @ H' )i with
(H® H’)”J“”Li for each 0 <7 <n+n'. Choose any
o € Gal(F,/F,). Since (H, [) and (H', [') are smooth,
we have o(Ker([)) C Ker([) and o(Ker([")) C
Ker(["). Suppose that we have a finite
Zj-\il w ®w;,w; € H", W € H™ such that

Je ) YL (fw) - (fw) =0

Then, it follows that

(J& [N ow) ® o(wh)

=YL(fo (w-))-(fla(wi;))

= 32 (A (H, )2 (1, [) fwz--f",
aH,fa f (i) (J W) =0

from which it follows that o(Ker( f®f
Ker([® ["). Hence, (H® H', [® [') is a smooth
cycle of dimension n + n'. O
Our next objective is to prove a version of
Lefschetz fixed point theorem for smooth cycles
(H, [) of some given dimension n. We note that
if p: X — X is a morphism of smooth schemes
over F,, ¢ induces a morphism ¢*: H*(X,Q;) —
H*(X,Q)) of degree 0. If X has dimension d, the
morphism ¢* can be described completely in terms
of the class of T, in H*(X x X), I', € X x X being
the graph of ¢. We will now associate to each

sum

i 1wt®w
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morphism ¢ : H* — H* of degree 0 on a smooth
cycle (H,[) of dimension n a class cl(p) €
(H® H)".

Proposition 3.4. Let (H,[) be a smooth
cycle of dimension n. Let o : H* — H* be a linear
operator of degree 0. Then, @ induces a natural class
clp) € (H o H)".

Proof. Suppose that V is a finite dimensional
Q-vector space and let ©:V — V be a linear
operator on V. Let B = {vy,...,v;} be a given basis
of V and let B* = {v},...,v;} be the dual basis
of %B. Let V* denote the linear dual of V. Then,
it is easy to check that the sum Zf:l P(v) @ uf €
V ® V* is independent of the choice of the basis B.
We set cly () = S0 () ® vl

Given the smooth cycle (H,[) and a linear
operator ¢ : H* —s H* of degree 0, we let ¢; : H' —
H', i > 0 denote the restriction of ¢ to each H'. For
each i, we define cl;(¢) = clyi(¢;) € H @ H*, where
H"™ denotes the linear dual of H'. Since (H, [) is a
smooth cycle of dimension n, we may take H* = H" .
Then, we have cl;(p) € H' @ H"'. Finally, we set

- ZHI ® H" i_

c(p) = i

1=0

— (Ho H)".

O

In the notation of the proof of Proposition 3.4,

for any linear operator ¥ :V — V on a finite

dimensional vector space V of dimension k, we can

also consider the transpose cli, (1) of cly (1), defined

as cll,(¥) = SF vr @ ¢(v;) € VF @ V. Then, given

a linear operator ¢ : H* — H* of degree 0 on a
smooth cycle (H, [), we can define

') =Y (~1)'ely(p) € H' @ H' =

i=0

(H® H)n

(since each H"™" = H™) and refer to cl’(p) as the
graded transpose of cl(p). We can now prove a
version of Lefschetz fixed point theorem.

Proposition 3.5. Let (H,[) be a smooth
n-dimensional cycle. Let F' denote the Frobenius
operator in the group Gal(F,/F,) and let I denote
the identity map. Then, for any k > 0, we have:

(J @ [)(cl'(F*) - cl(I)) = Ni(H, [)
= 2o (=)' Tr(F¥|H")
Proof. For each 0 < r <n, let d, = dimq,(H").
We let €, = {€[},.;, be a basis of H" and let §, =

{fi""}1<i<q denote a dual basis of €,. Hence §, may
be taken as a basis for H"". Then, by definition:
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A'(FF) =3 (-1 S @ Fie)
r=0 =0
and
n d,
A =33 e
r=0 =0

Then, the product

(J& DY -a(n) = (f& )
((ﬁ)(—l)" Eprere) (Saen))

13 e

(€)-fi™)

i M:

& 0

3

= > (=1)"Tr(F*|H") = Ni(H, [).
r=0
O
Proposition 3.6. Let (H,[) be a cycle of
dimension n. Then, the zeta function C(H >( z) of

(H, [) is a rational function of z with Qj coeffi-
czents
Proof. By definition, we know that

G (@) = e SOy Tr(E )

k=1r=

(="
= H ewp(Z Tr(F*H")? ) :
k=1

r=0
Since the Frobenius F' is a linear operator on each
finite dimensional vector space H", we have

00 k
eap( S Tr(FHHY) Z | = det(1 — Fo|H")™
p(; (F"[H) k) ( |H")
For each r, the determinant det(1 — Ft|H") is a
polynomial in Q,[t]. Hence, the result follows. O

Given a smooth cycle (H, [) of dimension n, for
any 0 <r <n, we will always let d, = dimq,(H").
Then, we denote by B the “Euler characteristic”
B:=3"" (—1)"d, of the smooth cycle (H, [).

Further, we will always let P.(z):=det(1 —
Fz|H"). Then, if we set:

P.(z) < 1 )
(2) = ——+—=det| F — - |H"
Q)= |
it makes sense to write Q,(c0) := det(F|H"). We
also set

Accordingly, it makes sense to write:

C(H’f)(z)
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= (ﬁ det(FHr)(l)r) —1'

r=0
Proposition 3.7. Let (H,[) be a smooth
cycle of dimension n. Let F € Gal(F,/F,) be the
Frobenius and let A\ = A\p(H, [). Then:
(a) If n is even, we have the functional equation:

(s (55) =2 "

(b) If n is odd, we have the functional equation:

- - 1 ~
S, )2 (Az) = (0% py0)

Proof. For any 0<r<mn, we have perfect
pairings of Q-vector spaces and a commutative
diagram:

HT‘ ®Ql H'II—T' Hﬂ Ql

F®Fl Fl /\l
J

HT’ ®Ql HTL—T H'Vl Ql .

Since A [(z-y)= [(F(z-y)) = [(F(z)- F(y)) for
any v € H", y € H" ", it follows from [4, Appendix
C, Lemma 4.3] that

P, (z) =det(l1 — Fz|H"™)

N F T
= (det (FIH") det(1 —|H")
_ DIy
~ det(F|H") T(E)
and
)\d,.
det(FIH"™ ") = —————.
UFIH™) = oo

(a) When n is even, we have:

(p) = (fpe )
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-2 r\ —1
L] 1\ 7 2 (*1)
= (H BL*T'(Z)( Y ) : (H (%) )
r=0 r=0
B —opy -1
_ (C(H7f)(z))2 . ()\ BZ QB) — )\BzQBC(H’f)(Z)2~
(b) Since d, = d,_,, it is clear that, for odd n:

(1)t 1
@D = et & (E)

Hence:

Q:(H,f)(i) = (rﬁo Qr(é)(_l)v

(o) (i
Y

= (71)B B Hf

et(F|H") )( 1)'>1
d o—dr

f()
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