Zeta functions of certain noncommutative algebras

By Abhishek Banerjee

Department of Mathematics, Ohio State University, 231 W 18th Ave, Columbus, Ohio, 43210, U.S.A.

(Communicated by Shigefumi Mori, M.J.A., April 12, 2011)

Abstract: For a fixed prime $l \in \mathbf{Z}$, we consider zeta functions for certain types of (not necessarily commutative) algebras over the completion \mathbf{Q}_l of \mathbf{Q} and show that they satisfy several properties analogous to those of the usual Hasse-Weil zeta function of an algebraic variety over a finite field.

Key words: Zeta functions; *l*-adic cohomology.

1. Introduction. The starting point of non-commutative geometry is the replacement of topological spaces by (not necessarily commutative) C^* -algebras (see [1]). It follows that, given a smooth scheme X over $Spec(\mathbf{Z})$, we can associate to X a manifold $X(\mathbf{C})$ over \mathbf{C} and hence the commutative C^* -algebra $C^*(X(\mathbf{C}))$ of complex valued continuous functions on $X(\mathbf{C})$. In this paper, we consider certain not necessarily commutative algebras over a completion \mathbf{Q}_l of \mathbf{Q} ($l \in \mathbf{Z}$ being a given prime) that enjoy several properties associated to schemes over finite fields. We refer to these objects as " Q_l^* -algebras".

The zeta function of an algebraic variety over a finite field has been extended naturally to several more general settings (see, for instance, Deitmar-Koyama-Kurokawa [2], Deitmar [3], Kurokawa [6,8] or Kurokawa-Wakayama [7]). For Q_l^* -algebras with certain additional data (see Definition 2.3), we introduce a zeta function that extends the usual Hasse-Weil zeta function on an algebraic variety over a finite field. Further, we develop appropriate functional equations for these zeta functions and also verify that they are rational functions over \mathbf{Q}_l . We also extend classical results such as the Lefschetz fixed point formula to this context.

2. Q_l^* -algebras. Throughout this paper, let $p \in \mathbf{Z}$ denote a fixed prime and let $l \neq p$ be a prime different from p. We note that the involution on a usual C^* -algebra may be seen as an action of the group $Gal(\mathbf{C}/\mathbf{R})$. This suggests that a " Q_l^* -algebra" should carry an action of the Galois group $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$, where $\overline{\mathbf{F}}_p$ denotes the algebraic closure of \mathbf{F}_p . Then, we define:

Definition 2.1. Let $l \in \mathbf{Z}$ be a fixed prime in \mathbf{Z} , different from p. A Q_l^* -algebra consists of a (not necessarily unital) graded \mathbf{Q}_l -algebra $H = \bigoplus_{i=0}^{\infty} H^i$ satisfying the following two properties:

- (a) Each H^i , $i \geq 0$ is a finite dimensional \mathbf{Q}_l -vector space.
- (b) Each H^i , $i \geq 0$ carries a \mathbf{Q}_l -linear action of the group $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ which is compatible with the graded algebra structure on H, i.e., for any $\sigma \in Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$, $\forall x \in H^i$, $y \in H^j$, $i, j \geq 0$, we have $\sigma(x) \cdot \sigma(y) = \sigma(x \cdot y)$.

The category of Q_l^* -algebras will be denoted by $Alg_{Q_l^*}$. Let Sm/\mathbf{F}_p denote the category of smooth projective schemes over \mathbf{F}_p .

Proposition 2.2. The category $Alg_{Q_l^*}$ of Q_l^* -algebras is a monoidal category. Further, there exists a monoidal functor

$$Q_l^*: Sm/\mathbf{F}_p \longrightarrow Alg_{Q_l^*}$$

that associates to each object X of Sm/\mathbf{F}_p a graded commutative Q_l^* -algebra.

Proof. Let $H=\bigoplus_{i=0}^{\infty}H^{i}$ and $H'=\bigoplus_{i=0}^{\infty}H'^{i}$ be two given Q_{l}^{*} -algebras. Then, $H\otimes_{\mathbf{Q}_{l}}H'$ is clearly a graded \mathbf{Q}_{l} -algebra such that each

$$(H \otimes_{\mathbf{Q}_l} H')^i := \bigoplus_{j+j'=i} H^j \otimes_{\mathbf{Q}_l} H'^{j'}$$

is a finite dimensional \mathbf{Q}_l -vector space. The group $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ also acts on each $(H \otimes_{\mathbf{Q}_l} H')^i$ via the diagonal action compatible with the product structure on $H \otimes_{\mathbf{Q}_l} H'$. Hence, $(H \otimes_{\mathbf{Q}_l} H')$ is also a Q_l^* -algebra.

Further, given any smooth projective scheme X over $Spec(\mathbf{F}_p)$, we let \overline{X} denote the fibre product $X \times_{Spec(\overline{\mathbf{F}_p})} Spec(\overline{\mathbf{F}_p})$. Then, we define

$$Q_l^*(X)^i := H^i(\overline{X}, \mathbf{Q}_l)$$

 $2000 \ {\rm Mathematics \ Subject \ Classification.} \quad {\rm Primary \ 11M38}.$

Then, $Q_l^*(X) := \bigoplus_{i=0}^{\infty} Q_l^*(X)^i$ becomes a graded commutative algebra under the cup product on l-adic cohomologies and carries a natural action of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ induced by the natural action of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ on \overline{X} . Moreover, for any smooth projective schemes X, Y over \mathbf{F}_p , we have

$$Q_l^*(X \times Y)^i = H^i(\overline{X} \times \overline{Y}, \mathbf{Q}_l)$$

$$\cong \bigoplus_{j+j'=i} H^j(\overline{X}, \mathbf{Q}_l) \otimes_{\mathbf{Q}_l} H^{j'}(\overline{Y}, \mathbf{Q}_l)$$

$$= \bigoplus_{j+j'=i} Q_l^*(X)^j \otimes_{\mathbf{Q}_l} Q_l^*(Y)^{j'}$$

by Künneth theorem for l-adic cohomologies. It follows that Q_l^* is a symmetric monoidal functor. \square

We will now exhibit several natural examples of \mathbf{Q}_{l}^{*} -algebras.

Examples: (1) Proposition 2.2 shows that to each smooth projective scheme X over \mathbf{F}_p , we can associate a natural graded commutative Q_l^* -algebra, which we have denoted by $Q_l^*(X)$.

(2) Let X be a smooth projective scheme over \mathbf{F}_p and define $H=\bigoplus_{i=0}^{\infty}H^i$ by setting $H^i:=H^i(\overline{X},\mathbf{Q}_l)$ as in the proof of Proposition 2.2. Let $T:H=\bigoplus_{i=0}^{\infty}H^i\longrightarrow H=\bigoplus_{i=0}^{\infty}H^i$ be a \mathbf{Q}_l -linear operator of degree 0 that commutes with the action of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ (for instance, we could take T to be any linear combination of elements of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$, since $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)\cong \hat{\mathbf{Z}}$ is abelian). Then, we can define a multiplicative structure on H by setting

$$x \cdot^T y := x \cup T(y)$$

where $x \in H^i = H^i(\overline{X}, \mathbf{Q}_l)$, $y \in H^j = H^j(\overline{X}, \mathbf{Q}_l)$ for all $i, j \in \mathbf{Z}$ and \cup denotes the usual cup product map on l-adic cohomologies. Then, H carries the structure of a graded algebra and $\sigma(x) \cdot^T \sigma(y) = \sigma(x \cdot^T y)$. We will denote this Q_l^* -algebra by $Q_l^*(X)_T$.

(3) More generally, suppose that A is any finite dimensional algebra over \mathbf{Q}_l with an action of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$. Then, we consider the universal algebra $\Omega(A)$ of A, defined as follows (see, for instance, [5]): let \tilde{A} denote the algebra obtained by adjoining a unit to A (even if A is already unital) and set

$$\Omega^i(A) := \tilde{A} \otimes A^{\otimes i}.$$

The action of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ on A can be extended to $\Omega^i(A)$ by setting $\sigma((a_0+\lambda\cdot 1)\otimes a_1\otimes\ldots\otimes a_i)=(\sigma(a_0)+\lambda\cdot 1)\otimes\sigma(a_1)\otimes\ldots\otimes\sigma(a_i))$ for all $a_0,\ldots a_i\in A$. Then, it is clear that $\Omega(A)=\bigoplus_{i=0}^\infty\Omega^i(A)$ is a Q_l^* -algebra in the sense of Definition 2.1.

Definition 2.3. Let $n \ge 0$ be a given integer. By a cycle of dimension n, we will mean a pair

 (H, \int) consisting of a Q_l^* -algebra $H = \bigoplus_{i=0}^{\infty} H^i$ such that $H^i = 0$ for all i > n and a linear functional $\int : H^n \longrightarrow \mathbf{Q}_l$.

A cycle (H, \int) of dimension n will be said to be smooth if: (a) the composition

$$H^i \otimes_{\mathbf{Q}_l} H^{n-i} \longrightarrow H^n \stackrel{\int}{\longrightarrow} \mathbf{Q}_l$$

is a perfect pairing of \mathbf{Q}_l -vector spaces for all $0 \le i \le n$ and (b) the Kernel of \int is invariant under the action of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$, i.e., for any $\sigma \in Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$, we have $\sigma(Ker(\int)) \subseteq Ker(\int)$.

We conclude this section by giving natural examples of smooth cycles (H, \int) :

(1) For any smooth and projective scheme X over \mathbf{F}_p of dimension d and for any \mathbf{Q}_l -linear automorphism T on $\bigoplus_{i=0}^{2d} H^i(\overline{X}, \mathbf{Q}_l)$ of degree 0 that commutes with the action of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$, Poincare duality

$$H^{i}(\overline{X}, \mathbf{Q}_{l}) \otimes_{\mathbf{Q}_{l}} H^{2d-i}(\overline{X}, \mathbf{Q}_{l}) \xrightarrow{1 \otimes T} H^{2d}(\overline{X}, \mathbf{Q}_{l})$$

$$\xrightarrow{\cong} \mathbf{Q}_{l}$$

enables us to define a smooth cycle $(Q_l^*(X)_T, \int_X)$ of dimension 2d. For instance, we could choose T to be an element of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ itself.

(2) Let K be a field extension of \mathbf{Q}_l and let $f: K \longrightarrow \mathbf{Q}_l$ denote a nonzero \mathbf{Q}_{l^-} linear functional on K. Let V be an n-dimensional K-vector space with a K-linear action of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ and let $E = \{e_1, e_2, \ldots, e_n\}$ be a basis for V. We choose an isomorphism $i_E: \Lambda^n V \xrightarrow{\cong} K$ by taking $e_1 \wedge \ldots \wedge e_n$ to $1 \in K$. Let $k \geq 0$ and choose some $v \in \Lambda^k V, v \neq 0$. Then v may be expressed as a finite sum $v = \sum a_{i_1, \ldots, i_k} e_{i_1} \wedge \ldots \wedge e_{i_k}$ where each $a_{i_1, \ldots, i_k} \in K$ and (i_1, \ldots, i_k) varies over all tuples $1 \leq i_1 < i_2 < \ldots < i_k \leq n$. Let $c \in K$ be such that $f(c) \neq 0$ and choose a tuple $1 \leq i'_1 < i'_2 < \ldots < i'_k \leq n$ such that $a_{i'_1, \ldots, i'_k} \neq 0$. Then there exists $\{j_1, \ldots, j_{n-k}\}$ such that $\{i'_1, \ldots, i'_k\} \cup \{j_1, \ldots, j_{n-k}\} = \{1, 2, \ldots, n\}$. It follows that the composition

$$\begin{array}{cccc} \Lambda^k V \otimes_{\mathbf{Q}_l} \Lambda^{n-k} V & \longrightarrow \Lambda^k V \otimes_K \Lambda^{n-k} V \longrightarrow \\ & \Lambda^n V & \xrightarrow[i_F]{\cong} K & \xrightarrow{f} \mathbf{Q}_l \end{array}$$

carries $v \otimes c \cdot a_{i'...i'_k}^{-1} e_{j_1} \wedge \ldots \wedge e_{j_{n-k}}$ to $\pm f(c) \neq 0$. Hence, for each $0 \leq k \leq n$, the composition above determines a perfect pairing of \mathbf{Q}_l -vector spaces. Further, if we assume that for each $\sigma \in Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$, the determinant $det(\sigma) \in \mathbf{Q}_l$ (where σ is considered as a K-linear automorphism on V), it follows that the data $(\bigoplus_{i=0}^{\infty} \Lambda^i V, f \circ i_E)$ determines a smooth cycle of dimension n.

3. Zeta functions of cycles. In this section, we will associate a zeta function to each n-dimensional smooth cycle (H, \int) and show that it satisfies several properties analogous to the (Hasse-Weil) zeta functions of varieties over \mathbf{F}_p .

Definition 3.1. Let (H, \int) be an *n*-dimensional cycle and let F denote the Frobenius element of $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$. For any $k \geq 0$, we set

$$N_k(H, \int) = \sum_{i=0}^n (-1)^i Tr(F^k : H^i \longrightarrow H^i)$$

Let z denote an indeterminate. Then, the zeta function $\zeta_{(H, \int)}(z)$ is defined as the formal series:

$$\zeta_{(H,\int)}(z) = exp\left(\sum_{k=1}^{\infty} N_k(H,\int) \frac{z^k}{k}\right).$$

Proposition 3.2. Let X be a smooth, projective scheme over \mathbf{F}_p of dimension d. Then, we have $\zeta_X(z) = \zeta_{(Q_l^*(X), \int_{X})}$, where $\zeta_X(z)$ denotes the Hasse-Weil zeta function associated to X.

Proof. For any $i \geq 0$, by definition, the Q_l^* -algebra $Q_l^*(X)$ is given by $Q_l^*(X)^i := H^i(\overline{X}, \mathbf{Q}_l)$ and $\int_X : H^{2d}(\overline{X}, \mathbf{Q}_l) \longrightarrow \mathbf{Q}_l$ is defined by the isomorphism $H^{2d}(\overline{X}, \mathbf{Q}_l) \cong \mathbf{Q}_l$. Then, the result follows directly from the well known Lefschetz fixed point formula.

Let (H, \int) and (H', \int') be cycles of dimensions n and n' respectively. Then, we can define a "product cycle" $(H \otimes H', \int \otimes \int')$ of dimension n + n' by setting

$$\left(\int \otimes \int'\right) (\omega \otimes \omega') = \left(\int \omega\right) \cdot \left(\int' \omega'\right)$$

for all $\omega \in H^n$, $\omega' \in H'^{n'}$.

Additionally, if (H, \int) is smooth, we have $\sigma(Ker(\int)) \subseteq Ker(\int)$ for each $\sigma \in Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ and \int is a \mathbf{Q}_l -linear functional on H^n . Hence, for each $\sigma \in Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$, there exists a scalar $\lambda_{\sigma}(H, \int) \in \mathbf{Q}_l$ such that we have

$$\int \sigma(\omega) = \lambda_{\sigma}(H, \int) \cdot \int \omega \qquad \forall \omega \in H^n$$

Proposition 3.3. (a) Let (H, \int) and (H', \int') be cycles of dimensions n and n' respectively. Then, for any $k \geq 0$, we have $N_k((H \otimes H', \int \otimes \int')) = N_k((H, \int)) \cdot N_k((H', \int'))$.

(b) If (H, \int) and (H', \int') are smooth cycles of dimensions n and n' respectively, so is the product cycle $(H \otimes H', \int \otimes \int')$.

Proof. (a) We choose any $k \ge 0$. Then, by definition

$$\begin{split} N_k((H \otimes H', \int'') \\ &= \sum_{i=0}^{n+n'} (-1)^i Tr(F^k : (H \otimes H')^i \longrightarrow (H \otimes H')^i) \\ &= \sum_{i=0}^{n+n'} (-1)^i \sum_{j+j'=i} Tr(F^k | H^j) \cdot Tr(F^k | H'^{j'}) \\ &= \sum_{i=0}^{n+n'} \sum_{j+j'=i} (-1)^j Tr(F^k | H^j) \cdot (-1)^{j'} Tr(F^k | H'^{j'}) \\ &= \left(\sum_{l=0}^{n} (-1)^l Tr(F^k | H^l)\right) \cdot \left(\sum_{l'=0}^{n'} (-1)^{l'} Tr(F^k | H'^{l'})\right) \\ &= N_k(H, \int) \cdot N_k(H', \int') \end{split}$$

(b) For any $0 \le i \le n+n'$, we know that $(H \otimes H')^i := \bigoplus_{j+j'=i} H^j \otimes H'^{j'}$. Then, it is clear that the linear functional $\int \otimes \int' : (H \otimes H')^{n+n'} \longrightarrow \mathbf{Q}_l$ defined by

$$\left(\int \otimes \int'\right) (\omega \otimes \omega') = \left(\int \omega\right) \cdot \left(\int' \omega'\right)$$

for all $\omega \in H^n$, $\omega' \in H'^{n'}$ composed with the product on $H \otimes H'$ defines a perfect pairing of $(H \otimes H')^i$ with $(H \otimes H')^{n+n'-i}$ for each $0 \leq i \leq n+n'$. Choose any $\sigma \in Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$. Since (H, \int) and (H', \int') are smooth, we have $\sigma(Ker(\int)) \subseteq Ker(\int)$ and $\sigma(Ker(\int')) \subseteq Ker(\int')$. Suppose that we have a finite sum $\sum_{i=1}^N \omega_i \otimes \omega_i'$, $\omega_i \in H^n$, $\omega' \in H'^{n'}$ such that

$$(\int \otimes \int')(\sum_{i=1}^N \omega_i \otimes \omega_i') = \sum_{i=1}^N (\int \omega_i) \cdot (\int' \omega_i') = 0$$

Then, it follows that

$$(\int \otimes \int')(\sum_{i=1}^{N} \sigma(\omega_{i}) \otimes \sigma(\omega'_{i}))$$

$$= \sum_{i=1}^{N} (\int \sigma(\omega_{i})) \cdot (\int' \sigma(\omega'_{i}))$$

$$= \sum_{i=1}^{N} (\lambda_{\sigma}(H, \int) \lambda_{\sigma}(H', \int'))(\int \omega_{i}) \cdot (\int' \omega'_{i})$$

$$= (\lambda_{\sigma}(H, \int) \lambda_{\sigma}(H', \int')) \sum_{i=1}^{N} (\int \omega_{i}) \cdot (\int' \omega'_{i}) = 0$$

from which it follows that $\sigma(Ker(\int \otimes \int')) \subseteq Ker(\int \otimes \int')$. Hence, $(H \otimes H', \int \otimes \int')$ is a smooth cycle of dimension n + n'.

Our next objective is to prove a version of Lefschetz fixed point theorem for smooth cycles (H, \int) of some given dimension n. We note that if $\varphi: X \longrightarrow X$ is a morphism of smooth schemes over \mathbf{F}_p , φ induces a morphism $\varphi^*: H^*(\overline{X}, \mathbf{Q}_l) \longrightarrow H^*(\overline{X}, \mathbf{Q}_l)$ of degree 0. If X has dimension d, the morphism φ^* can be described completely in terms of the class of Γ_{φ} in $H^{2d}(\overline{X} \times \overline{X})$, $\Gamma_{\varphi} \subseteq \overline{X} \times \overline{X}$ being the graph of φ . We will now associate to each

54 A. Banerjee [Vol. 87(A),

morphism $\varphi: H^* \longrightarrow H^*$ of degree 0 on a smooth cycle (H, \int) of dimension n a class $cl(\varphi) \in (H \otimes H)^n$.

Proposition 3.4. Let (H, \int) be a smooth cycle of dimension n. Let $\varphi : H^* \longrightarrow H^*$ be a linear operator of degree 0. Then, φ induces a natural class $cl(\varphi) \in (H \otimes H)^n$.

Proof. Suppose that V is a finite dimensional \mathbf{Q}_{l} -vector space and let $\psi:V\longrightarrow V$ be a linear operator on V. Let $\mathfrak{B}=\{v_1,\ldots,v_k\}$ be a given basis of V and let $\mathfrak{B}^*=\{v_1^*,\ldots,v_k^*\}$ be the dual basis of \mathfrak{B} . Let V^* denote the linear dual of V. Then, it is easy to check that the sum $\sum_{i=1}^k \psi(v_i)\otimes v_i^*\in V\otimes V^*$ is independent of the choice of the basis \mathcal{B} . We set $cl_V(\psi)=\sum_{i=1}^k \psi(v_i)\otimes v_i^*$.

Given the smooth cycle (H, \int) and a linear operator $\varphi: H^* \longrightarrow H^*$ of degree 0, we let $\varphi_i: H^i \longrightarrow H^i$, $i \geq 0$ denote the restriction of φ to each H^i . For each i, we define $cl_i(\varphi) = cl_{H^i}(\varphi_i) \in H^i \otimes H^{i*}$, where H^{i*} denotes the linear dual of H^i . Since (H, \int) is a smooth cycle of dimension n, we may take $H^{i*} = H^{n-i}$. Then, we have $cl_i(\varphi) \in H^i \otimes H^{n-i}$. Finally, we set

$$cl(\varphi) = \sum_{i=0}^{n} cl_i(\varphi) \in \sum_{i=0}^{n} H^i \otimes H^{n-i} = (H \otimes H)^n.$$

In the notation of the proof of Proposition 3.4, for any linear operator $\psi: V \longrightarrow V$ on a finite dimensional vector space V of dimension k, we can also consider the transpose $cl_V^t(\psi)$ of $cl_V(\psi)$, defined as $cl_V^t(\psi) = \sum_{i=1}^k v_i^* \otimes \psi(v_i) \in V^* \otimes V$. Then, given a linear operator $\varphi: H^* \longrightarrow H^*$ of degree 0 on a smooth cycle (H, \int) , we can define

$$cl^t(\varphi) = \sum_{i=0}^n (-1)^i cl^t_{H^i}(\varphi_i) \in H^{n-i} \otimes H^i = (H \otimes H)^n$$

(since each $H^{n-i} = H^{i*}$) and refer to $cl^t(\varphi)$ as the graded transpose of $cl(\varphi)$. We can now prove a version of Lefschetz fixed point theorem.

Proposition 3.5. Let (H, \int) be a smooth n-dimensional cycle. Let F denote the Frobenius operator in the group $Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ and let I denote the identity map. Then, for any $k \geq 0$, we have:

$$(\int \otimes \int)(cl^t(F^k) \cdot cl(I)) = N_k(H, \int)$$

= $\sum_{r=0}^n (-1)^r Tr(F^k|H^r)$

Proof. For each $0 \le r \le n$, let $d_r = dim_{\mathbf{Q}_l}(H^r)$. We let $\mathfrak{E}_r = \{e_i^r\}_{1 \le i \le d_r}$ be a basis of H^r and let $\mathfrak{F}_r = \{f_i^{n-r}\}_{1 \le i \le d_r}$ denote a dual basis of \mathfrak{E}_r . Hence \mathfrak{F}_r may be taken as a basis for H^{n-r} . Then, by definition:

$$cl^{t}(F^{k}) = \sum_{r=0}^{n} (-1)^{r} \sum_{i=0}^{d_{r}} f_{i}^{n-r} \otimes F^{k}(e_{i}^{r})$$

and

$$cl(I) = \sum_{r=0}^{n} \sum_{i=0}^{d_r} e_i^r \otimes f_i^{n-r}.$$

Then, the product

$$(\int \otimes \int)(cl^t(F^k) \cdot cl(I)) = (\int \otimes \int)$$

$$\left(\left(\sum_{r=0}^n (-1)^r \sum_{i=0}^{d_r} f_i^{n-r} \otimes F^k(e_i^r)\right) \cdot \left(\sum_{s=0}^n \sum_{i=0}^{d_s} e_i^s \otimes f_i^{n-s}\right)\right)$$

$$= \sum_{r=0}^n (-1)^r \sum_{i=0}^{d_r} \int (f_i^{n-r} \cdot e_i^r) \cdot \int (F^k(e_i^r) \cdot f_i^{n-r})$$

$$= \sum_{r=0}^n (-1)^r Tr(F^k|H^r) = N_k(H, \int).$$

Proposition 3.6. Let (H, \int) be a cycle of dimension n. Then, the zeta function $\zeta_{(H, \int)}(z)$ of (H, \int) is a rational function of z with \mathbf{Q}_l coefficients.

Proof. By definition, we know that

$$\begin{split} \zeta_{(H,\int)}(z) &= \exp\biggl(\sum_{k=1}^{\infty}\sum_{r=0}^{n}(-1)^{r}Tr(F^{k}|H^{r})\frac{z^{k}}{k}\biggr) \\ &= \prod_{r=0}^{n}\exp\biggl(\sum_{k=1}^{\infty}Tr(F^{k}|H^{r})\frac{z^{k}}{k}\biggr)^{(-1)^{r}}. \end{split}$$

Since the Frobenius F is a linear operator on each finite dimensional vector space H^r , we have

$$exp\left(\sum_{k=1}^{\infty} Tr(F^k|H^r) \frac{z^k}{k}\right) = det(1 - Fz|H^r)^{-1}.$$

For each r, the determinant $det(1 - Ft|H^r)$ is a polynomial in $\mathbf{Q}_l[t]$. Hence, the result follows.

Given a smooth cycle (H, \int) of dimension n, for any $0 \le r \le n$, we will always let $d_r = dim_{\mathbf{Q}_l}(H^r)$. Then, we denote by B the "Euler characteristic" $B := \sum_{r=0}^{n} (-1)^r d_r$ of the smooth cycle (H, \int) .

Further, we will always let $P_r(z) := det(1 - Fz|H^r)$. Then, if we set:

$$Q_r(z) := \frac{P_r(z)}{(-1)^{d_r} z^{d_r}} = det \bigg(F - \frac{1}{z} \left| H^r \right) \bigg)$$

it makes sense to write $Q_r(\infty) := det(F|H^r)$. We also set

$$\tilde{\zeta}_{(H,\int)}(z) = \left(\prod_{r=0}^{n} Q_r(z)^{(-1)^r}\right)^{-1} = (-1)^B z^B \zeta_{(H,\int)}(z).$$

Accordingly, it makes sense to write:

П

$$\begin{split} \tilde{\zeta}_{(H,\int)}(\infty) &:= \left(\prod_{r=0}^n Q_r(\infty)^{(-1)^r}\right)^{-1} \\ &= \left(\prod_{r=0}^n \det(F|H^r)^{(-1)^r}\right)^{-1}. \end{split}$$

Proposition 3.7. Let (H, \int) be a smooth cycle of dimension n. Let $F \in Gal(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ be the Frobenius and let $\lambda = \lambda_F(H, \int)$. Then:

(a) If n is even, we have the functional equation:

$$\left(\zeta_{(H,\int)}\left(\frac{1}{\lambda z}\right)\right)^2 = \lambda^B z^{2B} \zeta_{(H,\int)}(z)^2.$$

(b) If n is odd, we have the functional equation:

$$\tilde{\zeta}_{(H,\int)}(z)\tilde{\zeta}_{(H,\int)}\left(\frac{1}{\lambda z}\right) = (-1)^B z^{-B} \tilde{\zeta}_{(H,\int)}(\infty).$$

Proof. For any $0 \le r \le n$, we have perfect pairings of \mathbf{Q}_l -vector spaces and a commutative diagram:

Since $\lambda \int (x \cdot y) = \int (F(x \cdot y)) = \int (F(x) \cdot F(y))$ for any $x \in H^r$, $y \in H^{n-r}$, it follows from [4, Appendix C, Lemma 4.3] that

$$P_{n-r}(z) = det(1 - Fz|H^{n-r})$$

$$= \frac{(-1)^{d_r} \lambda^{d_r} z^{d_r}}{det(F|H^r)} det(1 - \frac{F}{\lambda z}|H^r)$$

$$= \frac{(-1)^{d_r} \lambda^{d_r} z^{d_r}}{det(F|H^r)} P_r(\frac{1}{\lambda z})$$

and

$$det(F|H^{n-r}) = \frac{\lambda^{d_r}}{det(F|H^r)}.$$

(a) When n is even, we have:

$$\left(\zeta_{(H,\int)}(\frac{1}{\lambda z})\right)^2 = \left(\prod_{r=0}^n P_r(\frac{1}{\lambda z})^{(-1)^r}\right)^{-2}$$

$$= \left(\prod_{r=0}^{n} P_{n-r}(z)^{(-1)^{n-r}}\right)^{-2} \cdot \left(\prod_{r=0}^{n} \left(\frac{\det(F|H^{r})^{2}}{\lambda^{2d_{r}}z^{2d_{r}}}\right)^{(-1)^{r}}\right)^{-1}$$

$$= \left(\zeta_{(H,\int)}(z)\right)^{2} \cdot \left(\lambda^{-B}z^{-2B}\right)^{-1} = \lambda^{B}z^{2B}\zeta_{(H,\int)}(z)^{2}.$$

(b) Since $d_r = d_{n-r}$, it is clear that, for odd n:

$$Q_{n-r}(z) = \frac{(-1)^{d_r} z^{-d_r}}{\det(F|H^r)} Q_r \left(\frac{1}{\lambda z}\right).$$

Hence:

$$\begin{split} \tilde{\zeta}_{(H,\int)}(\frac{1}{\lambda z}) &= \left(\prod_{r=0}^{n} Q_{r}(\frac{1}{\lambda z})^{(-1)^{r}}\right)^{-1} \\ &= \left(\prod_{r=0}^{n} Q_{n-r}(z)^{(-1)^{n-r}}\right) \cdot \left(\prod_{r=0}^{n} \left(\frac{\det(F|H^{r})}{(-1)^{d_{r}}z^{-d_{r}}}\right)^{(-1)^{r}}\right)^{-1} \\ &= (-1)^{B} z^{-B} (\tilde{\zeta}_{(H,\int)}(z))^{-1} \cdot \tilde{\zeta}_{(H,\int)}(\infty). \end{split}$$

References

[1] A. Connes, Noncommutative geometry, Academic Press, San Diego, CA, 1994.

[2] A. Deitmar, S. Koyama and N. Kurokawa, Absolute zeta functions, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no. 8, 138–142.

[3] A. Deitmar, Remarks on zeta functions and K-theory over F₁, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 141–146.

[4] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977.

[5] M. Karoubi, Connexions, courbures et classes caractéristiques en K-théorie algébrique, in Current trends in algebraic topology, Part 1 (London, Ont., 1981), 19–27, CMS Conf. Proc., 2 Amer. Math. Soc., Providence, RI.

[6] N. Kurokawa, Zeta functions over F₁, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 180– 184 (2006).

[7] N. Kurokawa and M. Wakayama, Zeta extensions, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 126–130.

[8] N. Kurokawa, Zeta functions of categories, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 10, 221–222.