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Abstract: We call a section of an elliptic surface to be everywhere integral if it is disjoint

from the zero-section. The set of everywhere integral sections of an elliptic surface is a �nite set

under a mild condition. We pose the basic problem about this set when the base curve is P1. In
the case of a rational elliptic surface, we obtain a complete answer, described in terms of the root

lattice E8 and its roots. Our results are related to some problems in Gr€obner basis, Mordell-Weil

lattices and deformation of singularities, which have served as the motivation and idea of proof
as well.
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1. Introduction. Let S be a smooth projec-

tive surface having a relatively minimal elliptic �bra-
tion f : S ! C with the zero-section O over a curve

C, and let E be the generic �bre of f which is an

elliptic curve over the function �eld K ¼ kðCÞ (k
is a base �eld of any characteristic). Assume that

S has at least one singular �bre. Then the group

M ¼ EðKÞ of K-rational points is �nitely generated
(Mordell-Weil theorem). It can be identi�ed with

the group of sections of f. For each P in EðKÞ, we

denote by ðP Þ the image curve of the corresponding
section C ! S; the curve ðP Þ may be also called a

‘‘section" without confusion.

An element P of M is called everywhere integral

[16] if ðP Þ is disjoint from the zero-section ðOÞ. Let

P be the set of all everywhere integral sections:

P ¼ fP 2MjðP Þ \ ðOÞ ¼ ;gð1:1Þ
Theorem 1.1. The set P is a �nite subset of

the Mordell-Weil group M.

Proof. By the height formula [11, Theorem 8.6],
we have for any P 2M

hP; P i ¼ 2�þ 2ðPOÞ �
X

w2Rf

contrwðP Þ;ð1:2Þ

where the notation is as follows: � is the arithmetic

genus of S (a positive integer), ðPOÞ is the intersec-

tion number of two irreducible curves ðP Þ and ðOÞ
on S, and contrwðP Þ is the local contribution at w
(a non-negative rational number); the summation

is over the set Rf of the points w 2 C with f �1ðwÞ
reducible. If P belongs to the set P, then it follows
that hP; P i � 2�. Thus P forms a set of points with

bounded height in M, and hence it is a �nite set.

(Recall that, by the theory of Mordell-Weil lattices
[11], the height pairing is positive-de�nite on M

modulo torsion.) r
Now consider the case: C ¼ P1, K ¼ kðtÞ. For

the sake of simplicity, we assume in the following

that the base �eld k is algebraically closed. Sup-

pose that E=K is given by a generalized Weierstrass
equation:

E : y2 þ a1xyþ a3y ¼ x3 þ a2x
2 þ a4xþ a6ð1:3Þ

and O is the point at in�nity ðx : y : 1Þ ¼ ð0 : 1 : 0Þ.
Without loss of generality, we assume that the co-

ef�cients a� are polynomials in t and ‘‘minimal’’ in

the sense that if, for some l 2 k½t�, a� is divisible by
l� for all �, then l must be a constant (i.e. l 2 k),

and if furthermore this holds even after one makes a

coordinate change of x; y. Then we have

deg a� � �� ð� ¼ 1; 2; 3; 4; 6Þð1:4Þ
where � is the arithmetic genus of S, which is known

to be characterized as the smallest integer satisfying

the above condition.
Lemma 1.2. Let P 2 M ¼ EðKÞ. Then P ¼

ðx; yÞ belongs to the set P if and only if x; y are poly-

nomials in t such that

degðxÞ � 2�; degðyÞ � 3�:ð1:5Þ
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Proof. See the proof of [16, Theorem 2]. r
Let

P ¼ ðx; yÞ :
x ¼ x0 þ x1tþ � � � þ x2�t

2�

y ¼ y0 þ y1tþ � � � þ y3�t
3�;

(
ð1:6Þ

and let

z ¼ zðP Þ ¼ ðx0; x1; � � � ; x2�; y0; y1; � � � ; y3�Þ:ð1:7Þ
Then, substituting (1.6) into (1.3), we obtain a poly-

nomial identity in t:

(1.8)

y2 þ � � � � ðx3 þ � � � þ a6Þ ¼ �0 þ �1tþ � � � þ �6�t
6�:

Let us denote by I the ideal generated by the co-
ef�cients �d of td in the polynomial ring R:

(1.9)

I :¼ ð�0; . . . ; �6�Þ � R :¼ k½x0; � � � ; x2�; y0; � � � ; y3��:
We call I the de�ning ideal of P. Obviously we have

P ¼ ðx; yÞ 2 P , z ¼ zðP Þ 2 V ðIÞ � A5�þ2ð1:10Þ
with V ðIÞ denoting, as usual, the af�ne scheme of

common zeroes of I in the af�ne space. The map
P 7! zðP Þ de�nes a bijection from P to the reduced

part V ðIÞred of V ðIÞ, and in particular, we have

n :¼ #P ¼ #V ðIÞred :ð1:11Þ
Note that V ðIÞred ¼ V ð

ffiffiffi
I
p
Þ where

ffiffiffi
I
p

denotes the

radical of I.
Now we consider the (irredundant) primary de-

composition of the ideal I:

I ¼ q1 \ � � � \ qnð1:12Þ
and the associated prime decomposition of the radi-
cal

ffiffiffi
I
p

:
ffiffiffi
I
p
¼ p1 \ � � � \ pn:ð1:13Þ

Here each qi is a primary ideal in the polynomial
ring R and pi ¼

ffiffiffiffiffi
qi
p

is a prime ideal. In fact, pi is

the maximal ideal of the point zðP Þ 2 V ðIÞ de�ned
by (1.7) for the corresponding P ¼ Pi 2 P. Let us

call

�ðPiÞ :¼ dimk R=qið1:14Þ
the multiplicity of Pi 2 P (cf. [3, Ch. 4], [9, Ch. 4],
[19, Ch. VII].)

We study the following question:

Question 1.3. Given an elliptic surface S

over P1 of arithmetic genus �, with the generic �bre

E given by (1.3) and (1.4) as above, what are (i) the

number of everywhere integral sections: n ¼ #P, (ii)

the linear dimension: dimk R=I , and (iii) the multi-

plicity �ðPiÞ ¼ dimk R=qi for each i � n?

Note that, by the Chinese Remainder theorem,
we have

dimk R=I ¼
Xn

i¼1

dimk R=qi ¼
Xn

i¼1

�ðPiÞ:ð1:15Þ

Hence (ii) will follow from (iii).

Before going further, we present an explicit

example.
Example 1.4. Let E=kðtÞ be the elliptic curve

y2 ¼ x3 þ t5 þ 1:ð1:16Þ

Here we assume k has characteristic 0 or p > 5.

Then (i) the number of everywhere integral sections

n ¼ #P is equal to 240. (ii) The linear dimension

dimk R=I is equal to 240, too. (iii) For all P 2 P, the

multiplicity �ðPÞ is equal to 1.
Proof. Let us show that dimk R=I ¼ 240 by a

direct computation using the method of Gr€obner

basis. To simplify the notation, we replace the ideal

I � R ¼ k½x0; x1; x2; y0; y1; y2; y3�
by a similar ideal

I 0 � R 0 ¼ k½u; x0; x1; y0; y1; y2�
by letting x2 ¼ u2; y3 ¼ u3. (Note that x3

2 � y2
3 is

contained in I.) The Gr€obner basis method yields a
‘‘shape basis" of I 0, i.e. a set of generators of I 0 of

the form:

I 0 ¼ð�240ðuÞ; xi�’iðuÞ; yj� jðuÞji ¼ 0; 1; j¼ 0; 1; 2Þ
where �; ’i;  j are polynomials of u and � is a sepa-

rable polynomial of degree 240. (The explicit form
of the polynomial � can be found in [13] or [15] if

desired.) Therefore we have

dimk R=I ¼ dimk R
0=I 0 ¼ dim k½u�=ð�ðuÞÞ ¼ 240:

Moreover the k-algebra R=I ffi k½u�=ð�ðuÞÞ is iso-

morphic to a direct sum of 240 copies of k, which

shows that I ¼
ffiffiffi
I
p

and the primary decomposition
of I is given by the 240 maximal ideals corresponding

to the 240 roots of the polynomial �ðuÞ. In other

words, P consists of n ¼ 240 elements and �ðP Þ ¼ 1
for each P . r

In this paper, we give a complete answer to

Question 1.3 in the case � ¼ 1, i.e. where S is a
rational elliptic surface. The main theorem (Theo-

rem 2.1) will be stated in the next section, whose

proof will be given in the forthcoming Part II [17].
In x3, we study the behavior of the 240 roots in the
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E8-frame of a rational elliptic surface under special-
ization and establish a basic result (Theorem 3.4).

As a by-product, we obtain a simple proof of the
fact that the Mordell-Weil group M is generated by

the set P of everywhere integral sections (Theorem

3.5), whose known proof depends on some case-by-
case checking [10].

The plan of the part II is as follows: we prove

the main theorem by applying Theorem 3.4 and
some general arguments [4, 5, 8]. Then we exhibit a

few examples to illustrate it (cf. [12{14]). Finally we

discuss some open questions in the case of higher
arithmetic genus � > 1.

As for the title of this paper, Gr€obner basis com-

putation is useful, as the above example shows, in
dealing with Question 1.3 when S or E is explicitly

given. We have made a helpful use of the software

‘‘Risa/asir" (developped by the authors of [9]) for
some numerical experiments and for direct veri�ca-

tion of our results based on the theory of Mordell-

Weil lattices and geometry of elliptic surfaces. The
idea from deformation of singularities (cf. [13], see

also [17, x2.3]) is disguised as the specialization argu-

ments in the proof of our main results.
Convention. Throughout the paper, we keep

the notation of x1; we sometimes write PS; IS; . . . to

specify the dependence of P; I; . . . on the elliptic sur-
face S under consideration. We continue to assume

that k is algebraically closed.

2. Answer in case ���F1. To state our
main results, let us �rst recall some basic facts on

rational elliptic surfaces, �xing the notation (cf. [10],

[11, x10]).
Let N ¼ NSðSÞ denote the N�eron-Severi lattice

of an elliptic surface S with a section. Let U be the

rank two unimodular sublattice of N spanned by the
classes of the zero-section ðOÞ and any �bre F . Let

V ¼ U? be the orthogonal complement of U in N ,

which is called the frame of S; we have N ¼ U 	 V .
If S is a rational elliptic surface (RES), the frame V

is a negative-de�nite even unimodular lattice of rank

8, and hence it is isomorphic to E�8 , the opposite
lattice of the root lattice E8 (cf. [2, Ch. 4]).

NSðSÞ ¼ U 	 V ; V ffi E�8 :ð2:1Þ
Thus we call the frame V of a RES as the E8-frame.

Let D ¼ DS � V be the subset of ‘‘roots" in V :

D ¼ fclðDÞ 2 V jD2 ¼ �2g:ð2:2Þ
By the above, it forms a root system of type E8. In
particular, we have

#D ¼ 240:ð2:3Þ
For any P 2 P ¼ PS, we set

DðP Þ :¼ ðP Þ � ðOÞ � F:ð2:4Þ
Then we have DðP Þ ? U and DðP Þ2 ¼ �2, hence
DðP Þ 2 D. (N.B. Here and in what follows, we some-

times write D 2 D by abbreviating clðDÞ 2 D, where

clðDÞ denotes the class of a divisor D in N . We write
D1 
 D2 if clðD1Þ ¼ clðD2Þ in N.)

On the other hand, each reducible �bre

f�1ðvÞðv 2 RfÞ is decomposed as a sum of its irre-
ducible components with positive integer coef�cients:

f�1ðvÞ ¼ �v;0 þ
Xmv�1

i¼1

kv; i�v; ið2:5Þ

where �v;0 is the unique component intersecting the

zero-section ðOÞ and where mv denotes the number
of the irreducible components. Let Tv denote the sub-

lattice of N generated by �v;ið1 � i � mv � 1Þ. It

is known (see [6, 7, 18]) that each �v;i has self-inter-
section number �2 (i.e. �v;i 2 D) and Tv is a (nega-

tive) root lattice of ADE-type determined by the

type of the reducible �bre. Let T be the sublattice of
the E8-frame V de�ned by

T ¼ 	v2Rf
Tv � V ffi E�8ð2:6Þ

which is called the trivial lattice of S.
Now our main theorem is the following

Theorem 2.1. Assume that S is a rational

elliptic surface. Then (i) the number of everywhere

integral sections n ¼ #P is bounded by 240:

0 � n � 240;ð2:7Þ
and we have

n ¼ 240() T ¼ 0:ð2:8Þ
(ii)

dimk R=I ¼ 240� �ðT Þð2:9Þ
where �ðTÞ is the number of roots in the trivial

lattice T.

(iii) For each i � n, the multiplicity �ðPiÞ (see

(1.14)) is equal to the combinatorial multiplicity

mðPiÞ to be de�ned below. In other words, we have

�ðP Þ ¼ mðP Þ for all P 2 P:ð2:10Þ

De�nition 2.2. For any P 2 P, let RfðP Þ de-

note the subset of v 2 Rf such that ðP Þ intersects

some non-identity component �v; iði 6¼ 0Þ of f �1ðvÞ.
The root graph associated with P , denoted by �ðP Þ,
is the connected graph with the vertices

23Gr€obner basis and Mordell-Weil latticesNo. 2]



DðP Þ;�v; i ðv 2 RfðP Þ; i 6¼ 0Þ;ð2:11Þ
where two vertices �; � are connected by an edge i�
the intersection number � � � ¼ 1. By a distinguished

root of �ðP Þ, we mean a linear combination of the

vertices of the form:

D ¼ DðP Þ þ
X

v; i

nv; i�v; i ðnv; i 2 Z;� 0Þð2:12Þ

satisfying D2 ¼ �2. Further we denote by mðP Þ
the number of distinguished roots in the root graph

�ðP Þ, and call it the combinatorial multiplicity of P .

The proof will be postponed to the part II [17].
First we need to establish, in the next section, the

fundamental relationship of the two sets P and D
for a given RES (Theorem 3.4).

3. Relationship of PPP and DDD. For a rational

elliptic surface, the Mordell-Weil group M ¼ EðKÞ
is isomorphic to the quotient group of the N�eron-
Severi group N by the subgroup U 	 T , hence to the

quotient group V =T :

M ffi N=ðU 	 T Þ ffi V =Tð3:1Þ

where V and T ¼ 	Tv are de�ned before in x2 (see

[10, 11]).
Now we study the relation of P and D, by re-

stricting the natural projection � : V ! V =T ffiM,

to the set of the roots D � V :

� : D !M:ð3:2Þ

Lemma 3.1. Assume T ¼ 0. Then the

Mordell-Weil lattice M is isomorphic to E8, and P is

equal to the set of sections P 2 M of height hP;Pi ¼
2. In this case, the map � gives a bijection: D ! P.

The inverse map P ! D is given by P 7!DðPÞ.
Proof. If T ¼ 0, the rational elliptic surface f :

S ! P1 has no reducible �bres, and hence M ffi E8

(see [10] or [11, x10]). Now the height formula (1.1)

says that for any P 2M
hP; P i ¼ 2þ 2ðPOÞ

where ðPOÞ is the intersection number of ðP Þ and
ðOÞ. Hence P has height 2 i� ðPOÞ ¼ 0, i.e. i� P 2 P.

As the set of roots in E8, both P and D have the

same cardinality 240. Thus the map P 7!DðP Þ gives
a bijection P ! D, and it is clear that �ðDðP ÞÞ ¼ P
for any P . Hence the assertion. r

Lemma 3.2. Suppose S is any rational ellip-

tic surface. Let ~S be a generic rational elliptic surface

(cf. [17, x2]), and we consider a smooth specialization
~S ! S preserving the elliptic �bration and the zero-

section. Then it induces an isomorphism of the

N�eron-Severi lattices

	 : NSð ~S Þ ��! NSðS Þ;ð3:3Þ

which gives rise to a bijection D ~S ! DS .

Proof. In general, a specialization of smooth

projective surfaces ~S ! S induces an injective homo-

morphism NSð ~S Þ ,!NSðS Þ preserving the intersec-

tion pairings. In the case of RES, it gives a lattice

isomorphism of NSð ~S Þ onto NSðS Þ in view of (2.1),

which preserves the sublattices U; V by assumption.
It is obvious that the set of roots D in V , (2.2), is

also preserved, proving the last assertion. r
(N.B. This result may be called the conservation

law of the E8-roots on RES under specialization or

deformation: cf. [13].)

Lemma 3.3. For any D 2 DS , �ðDÞ ¼ P be-

longs to PS unless �ðDÞ ¼ O. In this case, we have

D 
 DðP Þ þ 
 ð
 2 T Þð3:4Þ

where 
 is a linear combination of �v;i ðv 2 Rf ; i > 0Þ
with non-negative integer coef�cients.

Proof. Fix D 2 DS, and assume that �ðDÞ ¼
P 6¼ O. We claim that P 2 PS.

We may suppose that S is in the situation
described in Lemma 3.2. Then there exists some
~D 2 D ~S such that 	ð ~DÞ ¼ D. Applying Lemma 3.1

to ~S (which obviously has T ¼ 0), we have

~D ¼ Dð ~P Þ :¼ ð ~P Þ � ð ~OÞ � ~Fð3:5Þ

for some ~P 2 P ~S, where ~O (or ~F ) denotes the zero-

section (or a �bre) of ~S.

Suppose that, under the specialization, the irre-
ducible curve ~� :¼ ð ~P Þ on ~S reduces to an e�ective

divisor on S:

� ¼
X

j

�j

with the irreducible components �j. By the conserva-

tion of intersection numbers, we have

1 ¼ ð~� ~F Þ ¼ ð�F Þ ¼
X

j

ð�jF Þ

with each ð�jF Þ � 0. Hence there exists a unique

�j, say j ¼ 1, such that

ð�1F Þ ¼ 1; ð�jF Þ ¼ 0 ðj 6¼ 1Þ:
Then �1 is a section of S, i.e. �1 ¼ ðP1Þ for some

P1 2M, and all other �j are contained in �bres.

Obviously P1 is equal to P ¼ �ðDÞ.
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Next, in the intersection number relation:

0 ¼ ð~�ð ~OÞÞ ¼ ð�ðOÞÞ ¼ ðPOÞ þ
X

j>1

ð�jðOÞÞ;

observe that ðPOÞ � 0 (because P 6¼ O by assump-
tion) and ð�jOÞ � 0. Hence we have ðPOÞ ¼ 0 and

ð�jOÞ ¼ 0. The former implies that P 2 PS, as

claimed, while the latter implies that the other com-

ponents �jðj > 1Þ, if any, are among the non-iden-

tity components �v;i ði > 0Þ of reducible �bres.

Therefore ~D specializes via 	 to the following

(3.6)

D� ¼ ðP Þ � ðOÞ � ðF Þ þ 
; 
 ¼
X

v;i>0

mv;i�v;i 2 T

where mv;i are some non-negative integers. On the

other hand, since 	ð ~DÞ ¼ D, we have D 
 D�. This

proves Lemma 3.3. r
Theorem 3.4. For any rational elliptic sur-

face S with a section, let D be the set of roots in the

E8-frame. Then the map � : D ! P [ fOg is a sur-

jective map unless T ¼ 0, and D is decomposed into

the disjoint union:

D ¼ ��1ðOÞ
G G

P2P
��1ðP Þ:ð3:7Þ

The inverse image ��1ðOÞ is the set of roots in T (it

is empty if T ¼ 0). For any P 2 P, we have

(3.8)

��1ðP Þ ¼ fD 2 D j D 
 DðP Þ þ
X

v;i>0

mv;i�v;ig

ðmv;i � 0Þ which is equal to the set of distinguished

roots in the root graph �ðPÞ de�ned in x2. In par-

ticular, its cardinality is equal to the combinatorial

multiplicity of P:

mðP Þ ¼ #��1ðP Þ;ð3:9Þ
and

X

P 2P
mðP Þ ¼ 240� �ðT Þ:ð3:10Þ

Proof. This is clear by Lemma 3.1 and 3.3. The

decomposition (3.7) of D is just the union of the in-
verse images of �, and counting the cardinality gives

the relation (3.10). r
As a by-product of the above proof, we obtain a

conceptual proof of the following fact (see [9, Theo-

rem 2.5], [11, Theorem 10.8]), which has been proven

by using the classi�cation of RES plus some case-by-
case checking:

Theorem 3.5. For any rational elliptic sur-

face with a section (de�ned over an algebraically

closed �eld of arbitarary characterisitic), the Mordell-

Weil group is generated by the set P of everywhere

integral sections.

Proof. It is well-known that the root lattice E8 is
generated by a basis consisting of eight roots (see

e.g. [1, 2]). Hence the E8-frame V is generated by

the set D of roots. Since we have M ffi V =T by (3.1),
M is generated by �ðDÞ, hence by P by the �rst part

of Lemma 3.3. r
Acknowledgement. The author is funded

by JSPS Grant-in-Aid for Scienti�c Research 6 No.

20540051.

References

[ 1 ] N. Bourbaki, �El�ements de math�ematique. Fasc.
XXXIV. Groupes et alg�ebres de Lie. Chapitre
IV: Groupes de Coxeter et syst�emes de Tits.
Chapitre V: Groupes engendr�es par des r�e�e-
xions. Chapitre VI: syst�emes de racines, Her-
mann, Paris, 1968.

[ 2 ] J. H. Conway and N. J. A. Sloane, Sphere pack-
ings, lattices and groups, Third edition, Springer,
New York, 1999.

[ 3 ] D. Cox, J. Little and D. O’Shea, Using algebraic
geometry, Springer, New York, 1998.

[ 4 ] A. Grothendieck, �El�ements de G�eometrie Alg�ebri-
que, Publ. Math. IV, IHES.

[ 5 ] R. Hartshorne, Algebraic geometry, Springer, New
York, 1977.

[ 6 ] K. Kodaira, On compact analytic surfaces. II,
Ann. of Math. (2) 77 (1963), 563{626.

[ 7 ] K. Kodaira, On compact analytic surfaces. III,
Ann. of Math. (2) 78 (1963), 1{40.

[ 8 ] D. Mumford, Lectures on curves on an algebraic
surface, Princeton Univ. Press, Princeton, N.J.,
1966.

[ 9 ] M. Noro and K. Yokoyama, Computational Foun-
dations of Gr€obner Bases, Tokyo Univ. Press
(2003). (in Japanese).

[ 10 ] K. Oguiso and T. Shioda, The Mordell-Weil lat-
tice of a rational elliptic surface, Comment.
Math. Univ. St. Paul. 40 (1991), no. 1, 83{99.

[ 11 ] T. Shioda, On the Mordell-Weil lattices, Com-
ment. Math. Univ. St. Paul. 39 (1990), no. 2,
211{240.

[ 12 ] T. Shioda, Construction of elliptic curves with
high rank via the invariants of the Weyl groups,
J. Math. Soc. Japan 43 (1991), no. 4, 673{
719.

[ 13 ] T. Shioda, Mordell-Weil lattices of type E8 and
deformation of singularities, in: Lecture Notes
in Math. 1468 (1991), 177{202.

[ 14 ] T. Shioda, Existence of a rational elliptic surface
with a given Mordell-Weil lattice, Proc. Japan
Acad. Ser. A Math. Sci. 68 (1992), no. 9,
251{255.

25Gr€obner basis and Mordell-Weil latticesNo. 2]



[ 15 ] T. Shioda, Cyclotomic analogue in the theory of
algebraic equations of type E6; E7; E8, in Inte-
gral quadratic forms and lattices (Seoul, 1998),
87{96, Contemp. Math., 249, Amer. Math.
Soc., Providence, RI.

[ 16 ] T. Shioda, Integral points and Mordell-Weil lat-
tices, in A panorama of number theory or the
view from Baker’s garden (Z€urich, 1999), 185{
193, Cambridge Univ. Press, Cambridge.

[ 17 ] T. Shioda, Gr€obner Basis, Mordell-Weil Lattices

and Deformation of Singularities, II. Proc. Japan
Acad. Ser. A Math. Sci. 86 (2010), no. 2, 27{32.

[ 18 ] J. Tate, Algorithm for determining the type of a
singular �ber in an elliptic pencil, in Modular
functions of one variable, IV (Proc. Internat.
Summer School, Univ. Antwerp, Antwerp, 1972),
33{52. Lecture Notes in Math., 476, Springer,
Berlin.

[ 19 ] A. Weil, Foundations of algebraic geometry, Amer.
Math. Soc., Providence, R.I., 1962.

26 T. SHIODA [Vol. 86(A),


