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Grobner basis, Mordell-Weil lattices and deformation of singularities, I

By Tetsuji SHIODA®)**)

(Communicated by Heisuke HIRONAKA, M.J.A., Jan. 12, 2010)

Abstract:

We call a section of an elliptic surface to be everywhere integral if it is disjoint

from the zero-section. The set of everywhere integral sections of an elliptic surface is a finite set
under a mild condition. We pose the basic problem about this set when the base curve is P. In
the case of a rational elliptic surface, we obtain a complete answer, described in terms of the root
lattice Fg and its roots. Our results are related to some problems in Grobner basis, Mordell-Weil
lattices and deformation of singularities, which have served as the motivation and idea of proof

as well.
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1. Introduction. Let S be a smooth projec-
tive surface having a relatively minimal elliptic fibra-
tion f:S — C with the zero-section O over a curve
C, and let E be the generic fibre of f which is an
elliptic curve over the function field K = k(C) (k
is a base field of any characteristic). Assume that
S has at least one singular fibre. Then the group
M = E(K) of K-rational points is finitely generated
(Mordell-Weil theorem). It can be identified with
the group of sections of f. For each P in E(K), we
denote by (P) the image curve of the corresponding
section C' — S; the curve (P) may be also called a
“section” without confusion.

An element P of M is called everywhere integral
[16] if (P) is disjoint from the zero-section (O). Let
P be the set of all everywhere integral sections:

(1.1) P={Pe M|(P)n(0) =0}

Theorem 1.1. The set P is a finite subset of
the Mordell-Weil group M.

Proof. By the height formula [11, Theorem 8.6],
we have for any P € M
(12)  (P,P)=2x+2(PO)— > contr,(P),

wERf

where the notation is as follows: y is the arithmetic
genus of S (a positive integer), (PO) is the intersec-
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tion number of two irreducible curves (P) and (O)
on S, and contr,(P) is the local contribution at w
(a non-negative rational number); the summation
is over the set Ry of the points w € C with f~(w)
reducible. If P belongs to the set P, then it follows
that (P, P) < 2x. Thus P forms a set of points with
bounded height in M, and hence it is a finite set.
(Recall that, by the theory of Mordell-Weil lattices
[11], the height pairing is positive-definite on M
modulo torsion.) O

Now consider the case: C = P!, K = k(t). For
the sake of simplicity, we assume in the following
that the base field k is algebraically closed. Sup-
pose that F/K is given by a generalized Weierstrass
equation:

(1.3) E: y2 + a1y + azy = 22+ avx® + asx + ag

and O is the point at infinity (x:y:1)=(0:1:0).
Without loss of generality, we assume that the co-
efficients a, are polynomials in ¢ and ‘“‘minimal” in
the sense that if, for some [ € k[t], a, is divisible by
I“ for all v, then | must be a constant (i.e. | € k),
and if furthermore this holds even after one makes a
coordinate change of x,y. Then we have

(1.4) (v=1,2,3,4,6)

where y is the arithmetic genus of S, which is known
to be characterized as the smallest integer satisfying
the above condition.

Lemma 1.2. Let P€ M = E(K). Then P =
(z,y) belongs to the set P if and only if x,y are poly-
nomials in t such that

(1.5) deg(r) < 2,

dega, < vy

deg(y) < 3x.
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Proof. See the proof of [16, Theorem 2]. O
Let

(1.6) P=(z,y): {

T =x0+ 11t + -+ Doy X
Y=1yo+yt+ -+ ystx,
and let

(17) '7$2X7y(]7y17"'7y3x)'

Then, substituting (1.6) into (1.3), we obtain a poly-
nomial identity in ¢:

(1.8)

Ve — (24 4 ag) =¢o+¢>1t+"'+¢ﬁxtﬁx.
Let us denote by I the ideal generated by the co-
efficients ¢q of t? in the polynomial ring R:

(1.9)

I:= (¢07 ey ¢GX) CR:= ]{5[.’207 T2y, Yo, 7y3x}'
We call I the defining ideal of P. Obviously we have
(1.10) P=(z,9) €P & 2z=2(P) € V(I) C A"

with V(I) denoting, as usual, the affine scheme of
common zeroes of I in the affine space. The map
P +— z(P) defines a bijection from P to the reduced
part V(I),,, of V(I), and in particular, we have

(1.11) ni=H#P=H#V(I),.,-

Note that V(I),,; = V(VI) where v/I denotes the
radical of I.

Now we consider the (irredundant) primary de-
composition of the ideal I:

(1.12)

z=2(P) = (z, 21,

I'=qN---Naq,

and the associated prime decomposition of the radi-

cal VT

(1.13) VIi=p,n---Np,.

Here each q; is a primary ideal in the polynomial
ring R and p; = ,/q; is a prime ideal. In fact, p; is
the maximal ideal of the point z(P) € V(I) defined
by (1.7) for the corresponding P = P, € P. Let us
call

(1.14) pu(P;) = dimy, R/q;
the multiplicity of P; € P (cf. [3, Ch. 4], [9, Ch. 4],
[19, Ch. VII].)

We study the following question:

Question 1.3. Given an elliptic surface S

over Pt of arithmetic genus x, with the generic fibre
E given by (1.3) and (1.4) as above, what are (i) the
number of everywhere integral sections: n = #P, (ii)
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the linear dimension: dimy, R/I, and (iii) the multi-
plicity pu(P;) = dimy R/q; for each i < n?

Note that, by the Chinese Remainder theorem,
we have

(1.15)  dimR/T = dimR/q; = > pu(P,).
i=1 =1
Hence (ii) will follow from (iii).
Before going further, we present an explicit
example.
Example 1.4. Let E/k(t) be the elliptic curve

(1.16) v =2+ + 1

Here we assume k has characteristic 0 or p > 5.
Then (i) the number of everywhere integral sections
n=#P is equal to 240. (ii) The linear dimension
dimy, R/I is equal to 240, too. (iii) For all P € P, the
multiplicity p(P) is equal to 1.

Proof. Let us show that dimy R/I =240 by a
direct computation using the method of Grébner
basis. To simplify the notation, we replace the ideal

IcR= k[$07$17$27y0591ay2793]
by a similar ideal

I/ c R/ = k[“’? xvalayanhyQ]

by letting zo = u?,y3 = u®. (Note that x} —¢2 is

contained in I.) The Grobner basis method yields a
“shape basis” of I', i.e. a set of generators of I’ of
the form:

I/: (\11240(“’)7 XT; — @L(u)v Y — ¢](u)|l = 07 1;.7 = Oa 13 2)
where W, ¢;,1); are polynomials of u and ¥ is a sepa-
rable polynomial of degree 240. (The explicit form

of the polynomial ¥ can be found in [13] or [15] if
desired.) Therefore we have

dimy, R/I = dimy, R'/1" = dim k[u]/(¥(u)) = 240.

Moreover the k-algebra R/I = k[u]/(¥(u)) is iso-
morphic to a direct sum of 240 copies of k, which
shows that I = /T and the primary decomposition
of I is given by the 240 maximal ideals corresponding
to the 240 roots of the polynomial ¥(u). In other
words, P consists of n = 240 elements and p(P) =1
for each P. O

In this paper, we give a complete answer to
Question 1.3 in the case x =1, i.e. where S is a
rational elliptic surface. The main theorem (Theo-
rem 2.1) will be stated in the next section, whose
proof will be given in the forthcoming Part II [17].
In §3, we study the behavior of the 240 roots in the
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FEs-frame of a rational elliptic surface under special-
ization and establish a basic result (Theorem 3.4).
As a by-product, we obtain a simple proof of the
fact that the Mordell-Weil group M is generated by
the set P of everywhere integral sections (Theorem
3.5), whose known proof depends on some case-by-
case checking [10].

The plan of the part II is as follows: we prove
the main theorem by applying Theorem 3.4 and
some general arguments [4, 5, 8]. Then we exhibit a
few examples to illustrate it (cf. [12-14]). Finally we
discuss some open questions in the case of higher
arithmetic genus x > 1.

As for the title of this paper, Grobner basis com-
putation is useful, as the above example shows, in
dealing with Question 1.3 when S or E is explicitly
given. We have made a helpful use of the software
“Risa/asir” (developped by the authors of [9]) for
some numerical experiments and for direct verifica-
tion of our results based on the theory of Mordell-
Weil lattices and geometry of elliptic surfaces. The
idea from deformation of singularities (cf. [13], see
also [17, §2.3]) is disguised as the specialization argu-
ments in the proof of our main results.

Convention. Throughout the paper, we keep
the notation of §1; we sometimes write Pg, Ig,... to
specify the dependence of P, I, ... on the elliptic sur-
face S under consideration. We continue to assume
that k is algebraically closed.

2. Answer in case x=1. To state our
main results, let us first recall some basic facts on
rational elliptic surfaces, fixing the notation (cf. [10],
[11, §10]).

Let N = NS(S) denote the Néron-Severi lattice
of an elliptic surface S with a section. Let U be the
rank two unimodular sublattice of IV spanned by the
classes of the zero-section (O) and any fibre F. Let
V = U*" be the orthogonal complement of U in N,
which is called the frame of S; we have N =U @ V.
If S is a rational elliptic surface (RES), the frame V'
is a negative-definite even unimodular lattice of rank
8, and hence it is isomorphic to Eg , the opposite
lattice of the root lattice Es (cf. [2, Ch. 4]).

(2.1) NS(S)=UasV, VEg.
Thus we call the frame V of a RES as the Fg-frame.
Let D = Dg C V be the subset of “roots” in V:

(2.2) D = {c(D) € V|D* = —2}.

By the above, it forms a root system of type Eg. In
particular, we have
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(2.3) #D = 240.
For any P € P = Pg, we set
(2.4) D(P):=(P)—(0)-F.

Then we have D(P) LU and D(P)* = —2, hence
D(P) € D. (N.B. Here and in what follows, we some-
times write D € D by abbreviating cl(D) € D, where
cl(D) denotes the class of a divisor D in N. We write
D1 = DQ if Cl(Dl) = Cl(Dz) in N)

On the other hand, each reducible fibre
f1(v)(v € Ry) is decomposed as a sum of its irre-
ducible components with positive integer coefficients:

my—1

(25) fﬁl(v) = G'U,O + Z k’z,uiG'v,i
i—1

where ©, is the unique component intersecting the
zero-section (O) and where m, denotes the number
of the irreducible components. Let T}, denote the sub-
lattice of N generated by ©,;(1 <i<m,—1). It
is known (see [6, 7, 18]) that each ©,; has self-inter-
section number —2 (i.e. ©,; € D) and T, is a (nega-
tive) root lattice of ADE-type determined by the
type of the reducible fibre. Let T be the sublattice of
the Eg-frame V defined by

(2.6) T=®yer, T, CV=Eg

which is called the trivial lattice of S.
Now our main theorem is the following
Theorem 2.1. Assume that S is a rational
elliptic surface. Then (i) the number of everywhere
integral sections n = #P s bounded by 240:

(2.7) 0 < n <240,

and we have

(2.8) n=240<=T =0.
(i)

(2.9) dimy, R/T = 240 — v(T)

where v(T) is the number of roots in the trivial
lattice T.

(iii) For each i < n, the multiplicity p(P;) (see
(1.14)) 14s equal to the combinatorial multiplicity
m(P;) to be defined below. In other words, we have

(2.10) w(P) =m(P) for all P € P.

Definition 2.2. For any P € P, let Ry(P) de-
note the subset of v € Ry such that (P) intersects
some non-identity component 0, ;(i # 0) of f~1(v).
The root graph associated with P, denoted by A(P),
is the connected graph with the vertices



24 T. SHIODA

(2.11) D(P),0,; (ve Ry(P),i #0),

where two vertices «, 8 are connected by an edge iff
the intersection number « - 3 = 1. By a distinguished
root of A(P), we mean a linear combination of the
vertices of the form:

(212) D =D(P)+» ny Oy (nui € Z,>0)

satisfying D? = —2. Further we denote by m(P)
the number of distinguished roots in the root graph
A(P), and call it the combinatorial multiplicity of P.

The proof will be postponed to the part II [17].
First we need to establish, in the next section, the
fundamental relationship of the two sets P and D
for a given RES (Theorem 3.4).

3. Relationship of P and D. For a rational
elliptic surface, the Mordell-Weil group M = E(K)
is isomorphic to the quotient group of the Néron-
Severi group N by the subgroup U @ T, hence to the
quotient group V /T

(3.1) M=N/U&T)=V/T

where V and T = @T, are defined before in §2 (see
10, 11)).

Now we study the relation of P and D, by re-
stricting the natural projection 7:V — V/T = M,
to the set of the roots D C V:

(3.2) m:D— M.

Lemma 3.1. Assume T =0. Then the
Mordell-Weil lattice M is isomorphic to Fg, and P is
equal to the set of sections P € M of height (P, P) =
2. In this case, the map 7 gives a bijection: D — P.
The inverse map P — D is given by P +— D(P).

Proof. It T =0, the rational elliptic surface f:
S — P! has no reducible fibres, and hence M = Eg
(see [10] or [11, §10]). Now the height formula (1.1)
says that for any P € M

(P, P) = 2+ 2(PO)

where (PO) is the intersection number of (P) and
(O). Hence P has height 2 iff (PO) =0, i.e. iff P € P.

As the set of roots in Eg, both P and D have the
same cardinality 240. Thus the map P +— D(P) gives
a bijection P — D, and it is clear that 7(D(P)) = P
for any P. Hence the assertion. O

Lemma 3.2. Suppose S is any rational ellip-

tic surface. Let S bea generic rational elliptic surface
(cf. [17, §2]), and we consider a smooth specialization

S — S preserving the elliptic fibration and the zero-
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section. Then it induces an isomorphism of the
Néron-Severi lattices

(3.3)

o : NS(5) =5 NS(S),
which gives rise to a bijection Dg — Dg.
Proof. In general, a specialization of smooth

projective surfaces S — S induces an injective homo-

morphism NS(S) < NS(S) preserving the intersec-
tion pairings. In the case of RES; it gives a lattice

isomorphism of NS(S) onto NS(S) in view of (2.1),
which preserves the sublattices U,V by assumption.
It is obvious that the set of roots D in V, (2.2), is
also preserved, proving the last assertion. O

(N.B. This result may be called the conservation
law of the FEg-roots on RES under specialization or
deformation: cf. [13].)

Lemma 3.3. For any D € Dg, n(D) = P be-
longs to Ps unless (D) = O. In this case, we have

(3.4) D=DP)+vy (yeT)

where 7y is a linear combination of ©,; (v € Ry, i > 0)
with non-negative integer coefficients.

Proof. Fix D € Dg, and assume that w(D) =
P # O. We claim that P € Pg.

We may suppose that S is in the situation
described in Lemma 3.2. Then there exists some
De Dg such that o(D) = D. Applying Lemma 3.1
to S (which obviously has T = 0), we have

(3.5) D=D(P):=(P)—(0) - F
(

for some P € Py, where O (or F) denotes the zero-
section (or a fibre) of S.

Suppose that, under the specialization, the irre-
ducible curve T':= (P) on S reduces to an effective

divisor on S:
I=>T,
J

with the irreducible components I';. By the conserva-
tion of intersection numbers, we have

1=(IF) = (TF) =) (I;F)
J
with each (I';F) > 0. Hence there exists a unique
I'j, say j = 1, such that
(hF)=1, (IF)=0(j#1).
Then I'y is a section of S, i.e. I'y = (P;) for some

P e M, and all other I'; are contained in fibres.
Obviously P is equal to P = (D).
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Next, in the intersection number relation:
0= ([(0)) = (I'(0)) = (PO) + ) _(I';(0)),
>1

observe that (PO) > 0 (because P # O by assump-
tion) and (I';O) > 0. Hence we have (PO) =0 and
(I';jO) =0. The former implies that P € Pg, as
claimed, while the latter implies that the other com-
ponents I';(j > 1), if any, are among the non-iden-
tity components ©,; (i >0) of reducible fibres.
Therefore D specializes via o to the following

(3.6)
D*=(P)=(0) = (F)+7v, 7= myO,€T

0,i>0

where m,; are some non-negative integers. On the
other hand, since (D) = D, we have D = D*. This
proves Lemma 3.3. O

Theorem 3.4. For any rational elliptic sur-
face S with a section, let D be the set of roots in the
Es-frame. Then the map 7:D — PU{O0} is a sur-
jective map unless T =0, and D is decomposed into

the disjoint union:
(3.7) D=x'O) || |~ (P)
PeP
The inverse image w1(O) is the set of roots in T (it
is empty if T =0). For any P € P, we have
(3.8)
-1 _ _
7 (P)={DeD|D=D(P)+ Y m, O}
0,i>0

(my,; > 0) which is equal to the set of distinguished
roots in the root graph A(P) defined in §2. In par-
ticular, its cardinality is equal to the combinatorial
multiplicity of P:

(3.9) m(P) = #r'(P),
and
(3.10) > m(P) =240 — v(T).

pPeP

Proof. This is clear by Lemma 3.1 and 3.3. The
decomposition (3.7) of D is just the union of the in-
verse images of 7, and counting the cardinality gives
the relation (3.10). O

As a by-product of the above proof, we obtain a
conceptual proof of the following fact (see [9, Theo-
rem 2.5], [11, Theorem 10.8]), which has been proven
by using the classification of RES plus some case-by-
case checking;:
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Theorem 3.5. For any rational elliptic sur-
face with a section (defined over an algebraically
closed field of arbitarary characterisitic), the Mordell-
Weil group is generated by the set P of everywhere
integral sections.

Proof. It is well-known that the root lattice Eg is
generated by a basis consisting of eight roots (see
e.g. [1, 2]). Hence the Es-frame V is generated by
the set D of roots. Since we have M = V /T by (3.1),
M is generated by 7(D), hence by P by the first part
of Lemma 3.3. O

Acknowledgement. The author is funded
by JSPS Grant-in-Aid for Scientific Research © No.
20540051.

References

N. Bourbaki, Eléments de mathématique. Fasc.
XXXIV. Groupes et algébres de Lie. Chapitre
1V: Groupes de Cozeter et systemes de Tits.
Chapitre V: Groupes engendrés par des réfle-
zions. Chapitre VI: systémes de racines, Her-
mann, Paris, 1968.

. H. Conway and N. J. A. Sloane, Sphere pack-
ings, lattices and groups, Third edition, Springer,
New York, 1999.

D. Cox, J. Little and D. O’Shea, Using algebraic

geometry, Springer, New York, 1998.

A. Grothendieck, Eléments de Géometrie Algébri-
que, Publ. Math. IV, THES.

R. Hartshorne, Algebraic geometry, Springer, New
York, 1977.

K. Kodaira, On compact analytic surfaces. II,
Ann. of Math. (2) 77 (1963), 563-626.

K. Kodaira, On compact analytic surfaces. III,
Ann. of Math. (2) 78 (1963), 1-40.

D. Mumford, Lectures on curves on an algebraic
surface, Princeton Univ. Press, Princeton, N.J.,
1966.

M. Noro and K. Yokoyama, Computational Foun-
dations of Grobner Bases, Tokyo Univ. Press
(2003). (in Japanese).

K. Oguiso and T. Shioda, The Mordell-Weil lat-
tice of a rational elliptic surface, Comment.
Math. Univ. St. Paul. 40 (1991), no. 1, 83-99.

T. Shioda, On the Mordell-Weil lattices, Com-
ment. Math. Univ. St. Paul. 39 (1990), no. 2,
211-240.

T. Shioda, Construction of elliptic curves with
high rank via the invariants of the Weyl groups,
J. Math. Soc. Japan 43 (1991), no. 4, 673-
719.

T. Shioda, Mordell-Weil lattices of type Eg and
deformation of singularities, in: Lecture Notes
in Math. 1468 (1991), 177-202.

T. Shioda, Existence of a rational elliptic surface
with a given Mordell-Weil lattice, Proc. Japan
Acad. Ser. A Math. Sci. 68 (1992), no. 9,
251-255.

[ 1]

[ 10 ]

[11]

[12 ]

[13]

[[14 ]



26 T. SHIODA

[ 15 ] T. Shioda, Cyclotomic analogue in the theory of
algebraic equations of type Eg, F7, Eg, in Inte-
gral quadratic forms and lattices (Seoul, 1998),
87-96, Contemp. Math., 249, Amer. Math.
Soc., Providence, RI.

T. Shioda, Integral points and Mordell-Weil lat-
tices, in A panorama of number theory or the
view from Baker’s garden (Zurich, 1999), 185—
193, Cambridge Univ. Press, Cambridge.

T. Shioda, Grébner Basis, Mordell-Weil Lattices

[ 16 ]

[ 17 ]

[Vol. 86(A),

and Deformation of Singularities, II. Proc. Japan
Acad. Ser. A Math. Sci. 86 (2010), no. 2, 27-32.

J. Tate, Algorithm for determining the type of a
singular fiber in an elliptic pencil, in Modular
functions of one variable, IV (Proc. Internat.
Summer School, Univ. Antwerp, Antwerp, 1972),
33-52. Lecture Notes in Math., 476, Springer,
Berlin.

A. Weil, Foundations of algebraic geometry, Amer.
Math. Soc., Providence, R.I., 1962.

[18]

[19]



