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Abstract: In a recent paper in this Proceedings, H. Okamoto presented a parameterized

family of continuous functions which contains Bourbaki’s and Perkins’s nowhere di�erentiable

functions as well as the Cantor-Lebesgue singular function. He showed that the function changes
it’s di�erentiability from ‘di�erentiable almost everywhere’ to ‘non-di�erentiable almost every-

where’ at a certain parameter value. However, di�erentiability of the function at the critical

parameter value remained unknown. For this problem, we prove that the function is non-
di�erentiable almost everywhere at the critical case.
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1. Introduction. We consider a parameter-

ized family of continuous functions which were pre-
sented by H. Okamoto [3, 4]. This function can be

regarded as a generalization of Bourbaki’s [1] and

Perkins’s [5] nowhere di�erentiable functions as well
as of the Cantor-Lebesgue singular function.

Okamoto’s function is constructed as the limit

of a sequence ffng1n¼0 of piecewise linear and contin-
uous functions. For a �xed parameter a 2 ð0; 1Þ, each

function in the sequence is de�ned as follows:

(i) f0ðxÞ ¼ x;
(ii) fnþ1ðxÞ is continuous on [0,1],

(iii) fnþ1
k
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fnþ1
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3n

� �
¼ fn

kþ 1

3n

� �
;

for k ¼ 0; 1; � � � ; 3n � 1;

(iv) fnþ1ðxÞ is linear in each subinterval

k

3nþ1
� x � kþ 1

3nþ1
for

k ¼ 0; 1; � � � ; 3nþ1 � 1:

Figure 1 shows the operation from fn to fnþ1. Oka-

moto’s function FaðxÞ is then de�ned as

FaðxÞ ¼ lim
n!1

fnðxÞ:

He noticed that FaðxÞ is continuous on ½0; 1� and co-

incides with some known functions when a takes par-

ticular values. For example, the cases a ¼ 5=6 and
a ¼ 2=3 correspond to nowhere-di�erentiable func-

tions de�ned by Perkins [5] and Bourbaki [1] respec-

tively. Also, if a ¼ 1=2, Fa is the Cantor-Lebesgue
singular function which is non-decreasing and has

zero derivative almost everywhere (Fig. 2).

2. Di�erentiability of Fa. In the paper [3],
H. Okamoto proved that FaðxÞ has the following fea-

tures:

(i) If a < a0, then FaðxÞ is di�erentiable almost
everywhere.

(ii) If a0 < a < 2=3, then FaðxÞ is non-di�erentiable

almost everywhere.
(iii) If 2=3 � a < 1, then FaðxÞ is nowhere di�eren-

tiable.

Here, the constant a0ð¼ 0:5592 � � �Þ is the unique real
root of

54a3 � 27a2 ¼ 1:
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As for the case a ¼ a0, it remained open whether

FaðxÞ is di�erentiable almost everywhere or non-

di�erentiable almost everywhere. In this case, we
proved that FaðxÞ is non-di�erentiable almost every-

where.

3. Main result. The main result of this arti-
cle is the following

Theorem 1. If a ¼ a0, then FaðxÞ is non-

di�erentiable almost everywhere in ½0; 1Þ.
In order to prove this theorem, we need some

de�nitions and a preliminary lemma concerning with

the law of the iterated logarithm [2].
De�nitions. Let

x ¼
X1
n¼1

�nðxÞ
3n

; �nðxÞ 2 f0; 1; 2g;

denote the ternary expansion of x 2 ½0; 1Þ. If x is a
rational number of the form k=3n, we use the ternary

expansion ending in all 0’s (instead of the one ending

in all 2’s). We also use the following notations:

cðkÞ ¼ 1; ðk ¼ 0 or k ¼ 2Þ;
�2; ðk ¼ 1Þ;

�

and

SnðxÞ ¼
Xn
k¼1

c
�
�kðxÞ

�
;

TnðxÞ ¼ 1
�
�nþ1ðxÞ ¼ 1

�
� SnðxÞ;

where 1ðAÞ is the indicator function that takes the

value one if argument A is true and zero otherwise.

With these de�nitions, we have the following
lemma:

Lemma 1.

lim sup
n!1

TnðxÞffiffiffi
n
p � 1

holds for almost every x 2 ½0; 1Þ.
Proof. Since the cð�nÞ are i.i.d. random variables

with mean 0 and variance 2 with respect to Lebesgue

measure on ð0; 1Þ, the law of the iterated logarithm
[2] implies that

Fig. 1. The operation from fn to fnþ1. Before the operation (top)
and after the operation (bottom). This operation is performed in
each subinterval ½k=3n; ðkþ 1Þ=3n�.

Fig. 2. The graph of Perkins’s function (top), Bourbaki’s function
(middle) and the Cantor-Lebesgue singular function (bottom).
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lim sup
n!1

SnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n log logn

p ¼ 1

and

lim inf
n!1

SnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n log logn

p ¼ �1

almost everywhere in ð0; 1Þ.
Thus in particular, the events SnðxÞ=

ffiffiffi
n
p � 1

and SnðxÞ=
ffiffiffi
n
p � �1 both happen in�nitely often.

Each time SnðxÞ=
ffiffiffi
n
p

exits the interval ½1;1Þ, it

must do so with a value of

c
�
�nþ1ðxÞ

�
¼ �2

(the only negative value). Thus,

TnðxÞffiffiffi
n
p � 1

happens in�nitely often as well. r
We now complete the proof of the main theo-

rem.

Proof of theorem 1. We �rst note that FaðxÞ
has the following representation:

FaðxÞ ¼
X1
k¼1

�kðxÞ;

�kðxÞ ¼
Yk�1

l¼1

p
�
�lðxÞ

�
� q
�
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�
;

where
pð0Þ ¼ a; pð1Þ ¼ 1� 2a; pð2Þ ¼ a;

qð0Þ ¼ 0; qð1Þ ¼ a; qð2Þ ¼ 1� a:

In what follows, we assume that a ¼ a0 and x

satis�es

lim sup
n!1
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n
p � 1:

From the de�nition of TnðxÞ, we can take an increas-
ing sequence frng which satis�es
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Then,
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and we have the following evaluation:
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Using the following relations:

log
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 ¼ log
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 ¼ logð3aÞ;
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we obtain

FaðxÞ � FaðxnÞ
x� xn
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It follows that

lim
n!1

FaðxÞ � FaðxnÞ
x� xn










 ¼ 1:
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Namely, FaðxÞ is non-di�erentiable at x. From the
previous lemma, we know that

lim sup
n!1

TnðxÞffiffiffi
n
p � 1

holds almost everywhere in ½0; 1Þ, and so, we can con-

clude that FaðxÞ is non-di�erentiable almost every-
where in ½0; 1Þ.
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