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Abstract: In this note we show that Bollobás’ theorem on the trace of sets has

polynomial-size Frege proofs.

Key words: Lengths of proofs; Frege system; trace of sets.

1. Frankl’s theorem on the trace of sets.

In seeking natural, combinatorial problems that

are candidates for separating Frege and extended

Frege proof systems, Bonet, Buss and Pittasi [2]

concluded that P. Frankl’s theorem on the trace

of sets [3] is the only example they found which are

known to have polynomial-size extended Frege

proofs and for which they have no reason to

suspect that they have subexponential-size Frege

proofs.

Let us introduce some notations to state

Frankl’s theorem. jXj denotes the cardinality of

finite sets X. Throughout this paper matrices are

matrices over f0; 1g, i.e., entries of matrices are

either 0 or 1. Let A ¼ ðaijÞ be an m� n-matrix. ai

denotes the i-th row ðai1 . . . ainÞ. Each vector ai is

identified with the set XðaiÞ :¼ fj : aij ¼ 1g, and

the matrix A with the family F ðAÞ :¼ fXðaiÞ : 1 �
i � mg of subsets of ½n� :¼ f1; . . . ; ng. For a subset Y
of ½n�, the trace FðAÞjY of FðAÞ on Y is defined to be

the family of subsets fXðaiÞ \ Y : 1 � i � mg of Y .

In other words, FðAÞjY ¼ FðAjY Þ where AjY de-

notes the m� n-matrix erasing all 1-entries on the

columns not in the set Y : ði; jÞ-entry of AjY is 1 iff

aij ¼ 1 & j 2 Y .

Then the arrow notation

ðm;nÞ ! ðr; sÞ

designates that for any m� n-matrix A of distinct

rows (, i.e., jFðAÞj ¼ m), there exists a set Y � ½n�
of columns such that jY j ¼ s and at least r rows

differ from each other on the columns Y : jF ðAjY Þj �
r. Observe that

(a) if ðm;nÞ ! ðr; sÞ and m0 > m, then ðm0; nÞ !
ðr; sÞ.

(b) If ðm;nÞ ! ðm� r; sÞ and m0 < m � 2n, then

ðm0; nÞ ! ðm0 � r; sÞ.
Let F ðn; tÞ denote the maximum m for which

ðm;nÞ ! ðm� 2t�1 þ 1; n� 1Þ holds. Thus F ðn; tÞ �
m iff for any m� n-matrix A of distinct rows we can

find a column such that, if this column is deleted,

the resulting m� ðn� 1Þ-matrix will contain at

most 2t�1 � 1 pairs of equal rows.

P. Frankl [3] showed the following theorem.

Theorem 1. F ðn; tÞ � n ð2t�1Þ
t .

The simplest case t ¼ 1 of Theorem 1 is

Bondy’s Theorem, and the next case t ¼ 2 is due

to Bollobás [5].

A brief outline of his proof is as follows: Call a

matrix A of distinct rows hereditary if erasing any 1

entry causes two rows to become identical. Namely

8i; j½aij ¼ 1 ) 9k 6¼ i8l 6¼ jðail ¼ aklÞ�.
Frankl first shows that it suffices to prove

Theorem 1 for hereditary matrices: starting from a

given family of sets violating Theorem 1, iterating

the down-shift, cf. [4], produces a hereditary familly

of sets violating the same theorem. He then gives a

proof of the theorem for hereditary matrices based

on a corollary to the Kruskal-Katona theorem.

Bonet, Buss and Pittasi [2] show that the

(propositional tautologies translating the) corollary

to the Kruskal-Katona theorem have polynomial-

size Frege proofs. Thus there are polynomial-size

Frege proofs of Theorem 1 for hereditary matrices.

Moreover they mentioned two special cases

of Theorem 1, t ¼ 1; 2. Bondy’s theorem had been

suggested by J. Kraj���ček as a candiate for an

exponential separation between Frege and extended

Frege systems. However the fact F ðn; 1Þ � n was
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shown to have polynomial-size Frege proofs in [2].

After that they wrote

The second is when t ¼ 2 and m � 3n=2:

we have not been able to find subexponen-

tial-size Frege proofs even for this case.

(p.40, [2])

Also they noted

In fact, the only good combinatorial can-

diates we have found are based on Frankl’s

theorem (even for the t ¼ 2 case). How-

ever, in the past a similar state of affiars

has held for the pigeonhole principle and

for Bondy’s theorem and, subsequently,

polynomial-size Frege proofs for these

have been found. Thus, it is not unlikelly

that further progress will find polynomial-

size Frege proofs of the tautologies based

on Frankl’s theorem. (p.53, [2])

In this note we show the following theorem.

Theorem 2. The fact F ðn; 2Þ � 3n=2 has

polynomial-size Frege proofs.

In section 2, we give an elementary proof of the

fact F ðn; 2Þ � 3n=2. The proof is based on an idea

due to the first author, and is seen readily formal-

izable in the bounded arithmetic AID, [1], which

yields a polynomial-size Frege proofs of the case.

The idea is to divide the set ½m� ¼ f1; . . . ;mg of

rows into finer equivalence classes step by step.

Definition 1. Let A ¼ ðaijÞ be an m� n-

matrix, and Y a set of columns, i.e., Y � ½n�. Define

an equivalence relation i �Y k on the set ½m� of

rows as follows:

i �Y k :, 8j 2 Y ðaij ¼ akjÞ:

A=Y denotes the set of equivalence classes.

Thus for example, A=; ¼ f½m�g, A=½n� ¼ ½m�,
and A=Z is a refinement of A=Y if Z 	 Y .

2. The case t ¼ 2.

2.1. An elementary proof of the case t ¼ 2.

In this subsection we give an elementary proof of

the fact F ðn; 2Þ � 3n=2. Put m ¼ d3n=2e, and let

A ¼ ðaijÞ be an m� n-matrix of distinct rows. We

have to find a column such that, if this column is

deleted, the resulting m� ðn� 1Þ-matrix will con-

tain at most a pair of equal rows.

Suppose contrarily that there is no such

column. This means for any column j we can find

two pairs fhEðj; i; 0Þ; Eðj; i; 1Þi : i¼ 0; 1g of rows such

that the Eðj; i; 0Þ-th row differs only on the j-th

column from the Eðj; i; 1Þ-th row: aEðj;i;kÞ;j ¼ k for

k ¼ 0; 1 and Eðj; i; 0Þ �Z Eðj; i; 1Þ for Z ¼ ½n� � fjg.
Lemma 3. For any Y � ½n� and any j =2 Y ,

if Eðj; 0; 0Þ 6�Y Eðj; 1; 0Þ, then jA=ðY [ fjgÞj � jA=
Y j � 2, and if Eðj; 0; 0Þ �Y Eðj; 1; 0Þ, then jA=
ðY [ fjgÞj � jA=Y j � 1.

First consider the case when Eðj; 0; 0Þ 6�Y

Eðj; 1; 0Þ. This means that the columns in Y have

already distinguished the row Eðj; 0; kÞ from the

row Eðj; 1; kÞ. Then there are two equivalent

classes under �Y one of which contains rows

fEðj; 0; kÞ : k ¼ 0; 1g, and the other contains

fEðj; 1; kÞ : k ¼ 0; 1g, but each class splits up into

two equivalence classes under �Y [fjg. Hence jA=
ðY [ fjgÞj � jA=Y j � 2.

Next consider the case when Eðj; 0; 0Þ �Y

Eðj; 1; 0Þ. There is one equivalent class under �Y

which contains rows fEðj; i; kÞ : i; k ¼ 0; 1g. This

class splits up into two equivalence classes under

�Y [fjg. Hence jA=ðY [ fjgÞj � jA=Y j � 1. This

shows Lemma 3.

Now let us divide the set ½n� into two sets

Y‘ :¼ fj 2 ½n� : Eðj; 0; 0Þ 6�½j�1� Eðj; 1; 0Þg
Yr :¼ fj 2 ½n� : Eðj; 0; 0Þ �½j�1� Eðj; 1; 0Þg

for ½j� 1� ¼ f1; . . . ; j� 1g.
Obviously jY‘j þ jYrj ¼ n.

Let �k½ :¼ fk; . . . ; ng. Suppose j 2 Yr. This

means that the entries of the Eðj; 0; kÞ-th row

coincide with ones of Eðj; 1; kÞ-th row on the

columns ½j� 1�. Since these rows are distinct, we

can find another column p =2 ½j�, i.e., p 2 �jþ 1½
which distinguishes the row Eðj; 0; kÞ from the row

Eðj; 1; kÞ simultaneously: aEðj;0;kÞ;p 6¼ aEðj;1;kÞ;p for

any k ¼ 0; 1. Thus we have shown

j 2 Yr ) Eðj; 0; 0Þ 6��jþ1½ Eðj; 1; 0Þ:

Hence by Lemma 3, if j 2 Y‘, then jA=½j�j �
jA=½j� 1�j � 2 and jA=�j½j � jA=�jþ 1½j � 1. More-

over if j 2 Yr, then jA=½j�j � jA=½j� 1�j � 1 and

jA=�j½j � jA=�jþ 1½j � 2.

Therefore

jA=½n�j � jA=½0�j � 2jY‘j þ jYrjð1Þ

and

jA=�1½j � jA=�nþ 1½j � jY‘j þ 2jYrj:ð2Þ

Thus we get a contradiction 2ðm� 1Þ ¼ ðjA=½n�j �
jA=½0�jÞ þ ðjA=�1½j � jA=�nþ 1½jÞ � 3ðjY‘j þ jYrjÞ ¼ 3n

since m � 3n=2.

Remark. In fact the bound is tight, i.e.,
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F ðn; 2Þ ¼ d3n=2e. As Frankl [3] noted that F ðn; tÞ ¼
n ð2t�1Þ

t holds if t divides n. For readers’ convenience

let us reproduce his counterexmple. Put m ¼ n ð2t�1Þ
t

and define ðmþ 1Þ � n-matrix A as follows: Let K

denote the ð2t � 1Þ � t-matrix which is obtained

from a complete binary tree of depth t by deleting

the zero branch. Namely the i-th row denotes the

number in binary notation for 1 � i < 2t. Make n=t

copies of K, and arrange these on the diagonal of

the n=t square zero matrix, and finally append the

zero row to the lowest:

A ¼

K O 
 
 
 O

O K 
 
 
 O

..

. ..
. . .

. ..
.

O O 
 
 
 K

O1t O1t 
 
 
 O1t

0
BBBBBBB@

1
CCCCCCCA

where O1t denotes the 1� t-zero matrix.

Then if any column in A is deleted, the

resulting m� ðn� 1Þ-matrix will contain 2t�1 pairs

of equal rows. Note that the matrix A is hereditary.

Next consider the case when t ¼ 2 and n ¼
2kþ 1. Then d3n=2e ¼ 3kþ 2. First let

K ¼
1 1

1 0

0 1

0
B@

1
CA

and let B denote the following matrix:

B ¼

K O 
 
 
 O O3;1

O K 
 
 
 O O3;1

..

. ..
. . .

. ..
. ..

.

O O 
 
 
 K O3;1

O1;2 O1;2 
 
 
 O1;2 0

O1;2 O1;2 
 
 
 O1;2 1

Akþ3;1 O1;2 
 
 
 O1;2 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

where O denote the 3� 2-zero matrix, O3;1 the

3� 1-zero, O1;2 the 1� 2-zero matrix and Akþ3;1 is

the vector ð1 0Þ. Then if any column in B is deleted,

the resulting matrix will contain two pairs of equal

rows. Note that the matrix B is again hereditary.

2.2. Formailizability in AID. In this sub-

section we briefly discuss the formalizability of

the proof given in the subsection 2.1.

Any m� n-matrix over f0; 1g is coded by a

natural number in such a way that its ði; jÞ-entry
is a bit of the number. Then the arrow notation

ðm;nÞ ! ðm� 2t�1 þ 1; n� 1Þ can be expressed by

a 8�b
0-sentence in AID since bounded vector sum-

mation of any �b
0-bitdefinable function, and bound-

ed counting of any �b
0-formula are �b

0-bitdefinable

in AID. Likewise for any given set Y of columns of a

matrix A, the number jA=Y j of equivalence classes

under the equivalent relation �Y is �b
0-bitdefinable

by counting, e.g., the number of rows which are

not equivalent to any preceeding rows.

Thus bounded vector summations suffice to

prove Lemma 3, (1), (2), and to deduce the contra-

diction.

Therefore our proof is formalizable in AID, and

this yields polynomial-size Frege proofs of tautolo-

gies derived from the case t ¼ 2 of the Frankl’s

Theorem 1 F ðn; 2Þ � 3n=2.
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