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Abstract: In this note we give a new approach to the rationality problem of some

Cremona transformation. Let k be any field, kðx; yÞ be the rational function field of two variables

over k. Let � be a k-automorphism of kðx; yÞ defined by

�ðxÞ ¼ �xð3x� 9y� y2Þ3

ð27xþ 2x2 þ 9xyþ 2xy2 � y3Þ2
; �ðyÞ ¼

�ð3xþ y2Þð3x� 9y� y2Þ
27xþ 2x2 þ 9xyþ 2xy2 � y3

:

Theorem. The fixed field kðx; yÞh�i is rational (= purely transcendental) over k. Embodied in a

new proof of the above theorem are several general guidelines for solving the rationality problem

of Cremona transformations, which may be applied elsewhere.

Key words: Rationality problem; Cremona transformations; linear actions; monomial
group actions.

1. Introduction. Let k be any field,

kðx1; . . . ; xnÞ be the rational function field of n

variables. (It is not necessary to assume that k is

algebraically closed.) By a Cremona transformation

on Pn we mean a k-automorphism � on kðx1; . . . ;
xnÞ, i.e.

� : kðx1; . . . ; xnÞ �! kðx1; . . . ; xnÞð1Þ

where �ðxiÞ 2 kðx1; . . . ; xnÞ for each 1 � i � n and

� is an automorphism. We will denote by Crn
the group of all Cremona transformations on Pn.

The purpose of this note is to consider whether

kðx1; x2ÞG is rational (= purely transcendental)

over k where G is some finite subgroup of Cr2.

Note that, if k is algebraically closed, then kðx1;

x2ÞG is rational over k by Zariski-Castelnuovo’s

Theorem [Za]. On the other hand, if the group G

consists of automorphisms � such that, in (1), �ðxiÞ
are homogeneous linear polynomials (resp. mono-

mials) in x1; . . . ; xn, then the group action of G on

kðx1; . . . ; xnÞ is the usual linear action (resp. the

monomial group action). The rationality problem

of linear actions or the monomial group actions

has been investigated extensively. See, for exam-

ples, [Sw,KP,HK1,HK2,HR]. It seems that not

many research works are devoted to the rationality

problem of ‘‘genuine’’ Cremona transformations, i.e.

the �ðxiÞ in (1) are, instead of linear polynomials

or monomials, rational functions with total degrees

high enough, say, � 4. As far as we know, only ad

hoc techniques can be found in the literature for

solving the rationality problems of Cremona trans-

formations.

In this note we give a new approach to the

rationality problem of some Cremona transforma-

tion. We show the following theorem which was

given in [HM]���Þ from the view point of Tschirn-

hausen transformations of cubic generic polyno-

mials.

Theorem 1 ([HM] Theorem 10). Let k be

any field and kðx1; x2Þ be the rational function field

of two variables over k. Let � 2 Cr2 defined by

� : kðx1; x2Þ �! kðx1; x2Þ

where

�ðx1Þ ¼
�x1ð3x1 � 9x2 � x2

2Þ
3

ð27x1 þ 2x2
1 þ 9x1x2 þ 2x1x

2
2 � x3

2Þ
2
;

�ðx2Þ ¼
�ð3x1 þ x2

2Þð3x1 � 9x2 � x2
2Þ

27x1 þ 2x2
1 þ 9x1x2 þ 2x1x

2
2 � x3

2

:

Then kðx1; x2Þh�i :¼ ff 2 kðx1; x2Þ : �ðfÞ ¼ fg is ra-

tional over k.

Note that �2 ¼ 1.
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Many rationality problems arise from the study

of moduli spaces of some geometric configurations.

The rationality problem in Theorem 1 arose in the

study of the moduli of cubic generic polynomials.

See [HM].

We will give a new proof of Theorem 1 in

Section 2 (when char k 6¼ 2; 3) and Section 3 (when

char k ¼ 2, or 3). Our proof is completely different

from that in [HM]. We hope that this proof will be

helpful to people working on the rationality prob-

lem of Cremona transformations because it contains

systematic methods for attacking the rationality

problem. (See Step 1, Step 2 and Step 5 of Sec-

tion 2, in particular.) In keeping with the spirit of

the proof in Section 2 we give another proof of the

case char k ¼ 2 and the case char k ¼ 3 in Section 4

and Section 5 respectively.

Some symbolic computations in this note are

carried out with the aid of ‘‘Mathematica’’ [Wo].

Finally we will emphasize that it is unnecessary

to assume that the base field k is algebraically

closed or any restriction on the characteristic of k.

2. The case chark 6¼ 2;3. Throughout this

section, we assume that char k 6¼ 2; 3.

Step 1. Note that � induces a birational map

on P2. We will find some irreducible exceptional

divisors of this rational map. Clearly the curve

defined by 3x1 � 9x2 � x2
2 ¼ 0 is one of the candi-

dates. Taking its image �ð3x1 � 9x2 � x2
2Þ, we will

find another polynomial. Thus, define

y1 ¼ 3x1 � 9x2 � x2
2;

y2 ¼ 27x1 þ 9x1x2 þ x3
2;

y3 ¼ �27x1 � 2x2
1 � 9x1x2 � 2x1x

2
2 þ x3

2:

ð2Þ

With the aid of computers, it is easy to see that

� : y1 7�! y1y
2
2y

�2
3 ;ð3Þ

y2 7�! y31y
2
2y

�3
3 ;

y3 7�! y31y
3
2y

�4
3 :

Note that the determinant of the exponents of the

above map is

det

1 3 3

2 2 3

�2 �3 �4

0
B@

1
CA ¼ 1:

Thus the action of � on kðy1; y2; y3Þ can be lifted

to kðY1; Y2; Y3Þ (Y1; Y2; Y3 are algebraically independ-

ent over k) and induces a monomial action on

kðY1; Y2; Y3Þ. But we will not use this fact in the

following steps.

Step 2. Luckily we find that kðy1; y2; y3Þ ¼
kðx1; x2Þ. In fact, from (2), we may eliminate x2 and

get two polynomial equations of x1 with coefficients

in kðy1; y2; y3Þ; applying the Euclidean algorithm to

these two polynomials, we may show that x1 2
kðy1; y2; y3Þ.

More explicitly, with the aid of computers,

we will find (i) the expressions of x1; x2 in terms

of y1; y2; y3, and (ii) a polynomial equations of

y1; y2; y3. We get

x1 ¼
�2y31 � 729y2 þ 27y1y2 � 2y22 � 729y3 þ 27y1y3

108ðy2 þ y3Þ
;

x2 ¼
�2y41 þ 9y21y2 � 2y1y

2
2 þ 9y21y3 þ 81y2y3 þ 81y23

18ðy31 � y2y3Þ
;

fðy1; y2; y3Þ ¼ 2y61 þ 729y31y2 � 27y41y2ð4Þ
þ 4y31y

2
2 � 27y1y

3
2 þ 2y42 þ 729y31y3 � 27y41y3

� 27y1y
2
2y3 þ 729y2y

2
3 þ 729y33 ¼ 0:

Step 3. The map of � defined in (3) can be

simplified as follows: Define

z1 ¼ y�1
2 y3; z2 ¼ y1y

�1
2 ; z3 ¼ y�2

1 y3:

It follows that kðy1; y2; y3Þ ¼ kðz1; z2; z3Þ and

� : z1 7�! 1=z1; z2 7�! z3 7�! z2:ð5Þ

The relation fðy1; y2; y3Þ ¼ 0 in (4) becomes

gðz1; z2; z3Þ ¼ 2z21z
2
2 þ 4z1z2z3 � 27z1z

2
2z3ð6Þ

� 27z21z
2
2z3 þ 2z23 � 27z2z

2
3 � 27z1z2z

2
3 þ 729z32z

2
3

þ 729z1z
3
2z

2
3 þ 729z1z

2
2z

3
3 þ 729z21z

2
2z

3
3 ¼ 0:

Step 4. The map of � defined in (5) is

equivalent to

� : z2 � z3 7�! �ðz2 � z3Þ;
1� z1

1þ z1
7�! � 1� z1

1þ z1
; z2 þ z3 7�! z2 þ z3:

Thus kðx1; x2Þh�i ¼ kðz1; z2; z3Þh�i ¼ kðu1; u2; u3Þ where
u1; u2; u3 are defined by

u1 ¼ ðz2 � z3Þ2; u2 ¼
1� z1

1þ z1

� �
� ðz2 � z3Þ;

u3 ¼ z2 þ z3:

The relation gðz1; z2; z3Þ ¼ 0 in (6) becomes
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108u1u2 � 729u2
1u2 � 16u2

2 � 108u1u3 � 729u2
1u3ð7Þ

þ 32u2u3 � 16u2
3 � 108u2u

2
3 þ 1458u1u2u

2
3

þ 108u3
3 þ 1458u1u

3
3 � 729u2u

4
3 � 729u5

3 ¼ 0:

In conclusion, kðx1; x2Þh�i is a field generated by

u1; u2; u3 over k with the relation (7). We will

simplify the relation (7) to get two generators.

Step 5. The relation (7) defines an algebraic

surface. However this algebraic surface contains

singularities. We will make some change of varia-

bles to simplify the singularities and the equa-

tion (7). Define

v1 ¼ u1u
�1
3 ; v2 ¼ u2u

�1
3 ; v3 ¼ u3:

Then kðu1; u2; u3Þ ¼ kðv1; v2; v3Þ and the relation (7)

becomes

hðv1; v2; v3Þ ¼ 16þ 108v1 � 32v2 � 108v1v2ð8Þ
þ 16v22 � 108v3 þ 729v21v3 þ 108v2v3 þ 729v21v2v3

� 1458v1v
2
3 � 1458v1v2v

2
3 þ 729v33 þ 729v2v

3
3 ¼ 0:

We will determine the singularities of hðv1; v2; v3Þ ¼
0 by solving

hðv1; v2; v3Þ ¼
@h

@vi
ðv1; v2; v3Þ ¼ 0

for i ¼ 1; 2; 3. Then we get v2 � 1 ¼ v1 � v3 ¼ 0.

Define

w1 ¼ v1 � v3; w2 ¼ v2 � 1; w3 ¼ v3:

Therefore we have kðv1; v2; v3Þ ¼ kðw1; w2; w3Þ and

the relation (8) becomes

108w1w2 � 16w2
2 � 1458w2

1w3 � 729w2
1w2w3 ¼ 0:

The above equation is a linear equation in w3. Thus

w3 2 kðw1; w2Þ. It follows kðw1; w2; w3Þ ¼ kðw1; w2Þ.
We conclude that kðx1; x2Þh�i ¼ kðw1; w2; w3Þ ¼
kðw1; w2Þ is rational over k.

Step 6. We will give explicit formulae of

w1; w2 in terms of x1; x2. It is not difficult to find

that

w1

w2
¼

�4ð3x1 � 9x2 � x2
2Þ

27ð27þ x1 þ 9x2 þ x2
2Þ

;

w2 ¼
27ð27x1 þ 2x2

1 þ 9x1x2 þ 2x1x
2
2 � x3

2Þ
27x2

1 þ 18x2
1x2 � 27x1x

2
2 þ 27x3

2 þ 2x1x
3
2

:

Finally we obtain

kðx1; x2Þh�i ¼

k

�
3x1 � 9x2 � x2

2

27þ x1 þ 9x2 þ x2
2

;

27x1 þ 2x2
1 þ 9x1x2 þ 2x1x

2
2 � x3

2

27x2
1 þ 18x2

1x2 � 27x1x
2
2 þ 27x3

2 þ 2x1x
3
2

�
:

3. The remaining cases.

Step 1. In this step, we assume that char k ¼
2. Note that the automorphism � becomes

x1 7�!
x1ðx1 þ x2 þ x2

2Þ
3

ðx2
1 þ x1x2 þ x3

2Þ
2
;

x2 7�!
ðx1 þ x2

2Þðx1 þ x2 þ x2
2Þ

x2
1 þ x1x2 þ x3

2

:

Define

y1 ¼ x1 þ x2 þ x2
2; y2 ¼ x2:

Then we have kðx1; x2Þ ¼ kðy1; y2Þ and

� : y1 7�! y1; y2 7�!
y1ðy1 þ y2Þ

y1 þ y2 þ y1y2
:

Also define

z1 ¼ y1; z2 ¼
y1 þ y2

y2
:

It follows that kðy1; y2Þ ¼ kðz1; z2Þ and
� : z1 7�! z1; z2 7�! z1z

�1
2 :

Therefore we obtain

kðx1; x2Þh�i ¼ kðz1; z2Þh�i ¼ k z1; z2 þ
z1

z2

� �

¼ k x1 þ x2 þ x2
2;
x2
1 þ x1x

2
2 þ x3

2

x2ðx1 þ x2
2Þ

� �
:

Step 2. In this step, we assume that char k ¼
3. Note that the automorphism � becomes

x1 7�!
x1x

6
2

ðx2
1 þ x1x

2
2 þ x3

2Þ
2
; x2 7�!

�x4
2

x2
1 þ x1x2

2 þ x3
2

:

Define

y1 ¼ x1x
�2
2 ; y2 ¼ x�1

2 :

It follows that kðx1; x2Þ ¼ kðy1; y2Þ and

� : y1 7�! y1; y2 7�! �y2 � y1 � y21:

Hence we get
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kðx1; x2Þh�i ¼ kðy1; y2Þh�i ¼ kðy1; y2ðy2 þ y1 þ y21ÞÞ

¼ k
x1

x2
2

;
x2
1 þ x1x

2
2 þ x3

2

x5
2

� �
:

4. The case chark ¼ 2. In this section, we

assume that char k ¼ 2. Recall that the automor-

phism � is

x1 7�!
x1ðx1 þ x2 þ x2

2Þ
3

ðx2
1 þ x1x2 þ x3

2Þ
2
;

x2 7�!
ðx1 þ x2

2Þðx1 þ x2 þ x2
2Þ

x2
1 þ x1x2 þ x3

2

:

Define

y1 ¼ x1; y2 ¼ x1 þ x2 þ x2
2;ð9Þ

y3 ¼ x1 þ x1x2 þ x3
2:

With the aid of computers, it is easy to see that

� : y1 7�! y1y
3
2y

�2
3 ; y2 7�! y2; y3 7�! y32y

�1
3 :

From (9), we find that

x2 ¼
y2 þ y3

1þ y2
:ð10Þ

And therefore we have that kðy1; y2; y3Þ ¼ kðx1; x2Þ.
Using (9) to eliminate x1; x2, we obtain the relation

fðy1; y2; y3Þð11Þ
¼ y1 þ y1y

2
2 þ y32 þ y3 þ y2y3 þ y23 ¼ 0:

Define

z1 ¼ y1y
�1
3 ; z2 ¼ y22y

�1
3 ; z3 ¼ y�1

2 y3:

It follows that kðy1; y2; y3Þ ¼ kðz1; z2; z3Þ and

� : z1 7�! z1; z2 7�! z3 7�! z2:

We find that the relation fðy1; y2; y3Þ ¼ 0 in (11)

becomes

gðz1; z2; z3Þð12Þ
¼ 1þ z1 þ z2z3 þ z22z3 þ z2z

2
3 þ z1z

2
2z

2
3 ¼ 0:

Define

u1 ¼ z1; u2 ¼ z2z3; u3 ¼ z2 þ z3:

Then we have kðx1; x2Þh�i ¼ kðz1; z2; z3Þh�i ¼ kðu1;

u2; u3Þ and the relation in (12) becomes

1þ u1 þ u2 þ u1u
2
2 þ u2u3 ¼ 0:

Thus u3 2 kðu1; u2Þ. It follows that kðx1; x2Þh�i ¼
kðu1; u2; u3Þ ¼ kðu1; u2Þ is rational over k. It is easy

to obtain the formulae of the generators u1; u2 of

kðx1; x2Þh�i in terms of x1; x2. Indeed we have

u1 ¼
x1

x1 þ x1x2 þ x3
2

; u2 ¼ x1 þ x2 þ x2
2:

5. The case chark ¼ 3. In this section, we

assume that char k ¼ 3. Recall that the automor-

phism � is

x1 7�!
x1x

6
2

ðx2
1 þ x1x

2
2 þ x3

2Þ
2
; x2 7�!

�x4
2

x2
1 þ x1x

2
2 þ x3

2

:

Define

y1 ¼ x1; y2 ¼ �x2; y3 ¼ x2
1 þ x1x

2
2 þ x3

2:

It is clear that kðx1; x2Þ ¼ kðy1; y2; y3Þ and

� : y1 7�! y1y
6
2y

�2
3 ; y2 7�! y42y

�1
3 ; y3 7�! y152 y�4

3 :

The map of � above can be simplified as follows:

Define

z1 ¼ y1y
�2
2 ; z2 ¼ y�4

2 y3; z3 ¼ y�1
2 :

It follows that kðy1; y2; y3Þ ¼ kðz1; z2; z3Þ and
� : z1 7�! z1; z2 7�! z3 7�! z2:

We also obtain the relation

gðz1; z2; z3Þ ¼ z1 þ z21 � z2 � z3 ¼ 0:ð13Þ

Thus kðx1; x2Þh�i ¼ kðz1; z2; z3Þh�i ¼ kðu1; u2; u3Þ where
u1; u2; u3 are defined by

u1 ¼ z1; u2 ¼ z2z3; u3 ¼ z2 þ z3:

The relation gðz1; z2; z3Þ ¼ 0 in (13) becomes

u1 þ u2
1 � u3 ¼ 0:

We conclude that kðx1; x2Þh�i ¼ kðu1; u2; u3Þ ¼
kðu1; u2Þ is rational over k. The generators u1; u2

of kðx1; x2Þh�i over k are given in terms of x1; x2 as

follows:

u1 ¼
x1

x2
2

; u2 ¼
�ðx2

1 þ x1x
2
2 þ x3

2Þ
x5
2

:
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