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The purpose of this note is to give a simple and new proof to the
existence of an independent product measure on a Cartesian infinite
product space.

Let {(.Or, !r, mr) tr e/’} be a family of measure spaces satisfying
mr(12r)= 1 for each r e F, where we mean by a meazure space (12, , m)
a triple of a space 12 (without topology), a Borel field ! of subsets B
of -O, and a countably additive measure re(B) defined on (with
0<2m(12) o). We shall first define a measure space (/2*, !*, m*)
which we call the independent product measure space of the family
{(,, m,) T _r}.

The space -O*, which is symbolically denoted as

(1) 12" =Prr12r

is the set of all F-sequences (or functions defined on F)

(2) ,o*= {,o, r r}

such that ,or e .Or for each r e F.

A subset R* of 12" is called rectangular if it is of the form:

(3) R*=Br, x x Br- x Prer-(r, rn} 12r

where Br e !r, i= 1, ..., n, and {r, -.-, r,} is an arbitrary finite system
of elements from F. R* is, by definition, the set of all o*= {,orlrer}e12*
such that mr e Br for i= 1, ..., n. The family of all rectangular sets
R* of 12" is denoted by

Further, a subset E* of 12" is called elementary if it is of the
form-

(4)

where R e!a* for i=l, ..., n. We may assume that the R in (4)
are mutually disjoint. This follows from the fact that the intersection
of two rectangular set of /2* is again rectangular, and that the com-
plementary of a rectangular set of .c2" is expressible as the union of a
finite number of mutually disjoint rectangular sets of 12". The family
of all elementary sets E* of
is a field.

We shall next define a set function m*(R*) on * by

(5) m*(R*)=mr’(Br’) x mr(Br)

if R* is of the form (3), and then m*(E*) on * by

(6) m*(E*)=
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if E* is of the form (4) and if the R are mutually disjoint. It is
easy to see that, although the expressions (3) and (4) are not unique
for a given set R or E*, the values m*(R*) and m*(E*) defined by
w) and (6) are uniquely determined. Further, it is clear that, if an
elementary set E* happens to be u rectangular set R*, then the two
definitions (5) and (6) give the same value. It is also clear that m*(E*)
is finitely additive on the field

A measure space {.0",*, m*) defined on the Cartesian product
space Y2* is called the independent product measure space of the family
{(r, r, nr) lr e F}, if * is the Borel field generated by *, and if
m*(B*) coincides with m*(E*) on {*. This fact is expressed symboli-
cally as

(7) {-O*, *, m.)=Prer (R) (yjr, r, mr).

Then the main purpose of this paper is to give a proof tc the
following

Theorem. Let {(-Or, r, mr) it e F} be a family of measure spares
satisfying mr(-Or)=l for each r e F. Then there exists an independent
product measure space (-o*, *, m*)=Prr (R) (-Or, r, mr).

This theorem was proved by A. Kolmogoroffi in case when each
measure space (.0r, r; mr), 7" e F, is the Lebesgue measure space defined
on the closed interval (0,1) (i. e., when -Or is the closed interval (0,1),
D is the Borel field of all Lebesgue measurable subsets Br of (0,1), and
mr(Br) is the ordinary Lebesgue measure on Dr). More general eases were
discussed by J.L. Doob2) by reducing them to the case of A. Kolmo-
goroff The proof of A. Kolmogoroff, however, is based on the fact
that the Cartesian product space -O* is compact (=bicompact)with
respect to the ordinary weak topology of the product space whenever
each factor space .r, 7" e I, is compact. In the following lines we shall
give a simple proof to our theorem which is completely free from the
notion of topology3).

Proof. It is sufficient to show that the finitely additive measure
m*(E*) defined on the field * can be extended to a countably additive
measure m*(B*) defined on the Borel field B* generated by *. In
order to show this, it suffices to verify that)

(8) E;, e * *(E,) > > 0, E, E;,/1, k=l, 2,

implies flolEh :k=@, where @ .denotes the empty set. Since every
rectangular, and hence every elementary, set is determined by a finite

1) A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeiung, Berlin, lkq3.

2) J.L. Doob, Stochastic processes depending on an integral valued parameter,
Trans. Amer. Math. Soc. 44 (1938).

3) 7, Lomnicki and S. Ulam, Sur la thorie de la mesure darts les espaces com-
binatoires et son application au calcul des probabilits L Variables indpendantes,
Fund. Math. 23 (1934), 237-278.

In this paper it is attempted to prove our theorem without appealing to the
notions of topology, but unfortunately the proof given here contains a mistake.

4) See, for example, E. Hopf, Ergodentheorie, Berlin, 1937, 1 2.
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number of coordinates1’, there exists a sequence of indices { r,,.
from F and an increasing sequence of positive integers {nk k 1, 2, ...}
such that the set E is determined by the coordinates {,
for k=l, 2,

Let us now put

(9) }*()=Prr- (r T}r
n--l, 2, ..., and decompose the whole space .Q* into factors:

(10) .@*= ., x--. x p.T x

We have also

(11) *(*)= +1 x

n=0, 1, 2, ..., where we put 9"()=9*. In each -Q*(*, we may define
rectangular sets R*), elementary sets E*(, and also the measures
m*((R*() and m*)(E*) defined on the family 9t*( and {*( of
all these sets R*() and E*() respectively. This can be carried out
in exactly the same way as in the case of the space .0.(0= },.

Now, for each wr’e r,, consider the sets

(2) (E;).. {*(" (,, *’")
k=l, 2, (E;),r, is, by definition, the set of all w*(l 9*( such that
(.*’. *(’) E* E*,. It is clear that (E),r, e {*(1) and (E),r,
for each wr’ .r, and k= 1, 2, and that

for k= 1, 2, Since the sequence of functions {m.(l((E;),r,)i k= 1, 2, ...},
defined and measurable on the measure space (}r’, r, m,,), is uniformly
bounded between 0 and 1, and is monotone non-increasing, there exists
an w[’e-@r’ and a positive number :> 0 such that

() *,’,((),) >= ,> 0

for k 1, 2,
Thus we see that the same condition as (8) is satisfied in *(v by

the sequence of elementary sets {(E),, k=l, 2, ...}. Consequently,

by proceeding in this way, we shall be able to obtain a sequence of
points {w[* n= 1, 2, ...} such that w* .r for n= 1, 2,..., and a
sequence of positive numbers { n 1, 2,... } satisfying the condition

(5) *(’((E;)o,, a.) >__ .> 0

for k, =1, 2, ..., where we put

1) A subset A* of * is determined by a finite number of coordinates if there

exists a finite system of elements (r, r,) from r such that a point
belongs to A* whenever there exists an *=(T[ rer}e9 belonging to A* with

i:zi for i=1
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(16) (E,)o,,. o,[, t,*" (a,’, o,*, ,o*’*) e E*

i.e., (E:),... is the t of all in ,,*)e 9"( such that (’, ...,,, ,*) e E*, or equivalently the t of all in ,* e 9" such
that (,, *’) e (E), -.

We claim that a int w*= {,o r e F} e 9 satisfying ,,,
for n=l 2, lon to E for k=l, 2. In fact, for ch E*
them es an integer n such that E; is dermin by the crdi-
nat {r,,r...,r). The relation (15) f,-,r n=n then impli that

’them exis an *(k’ e 2"k such that (’,, ..., ’0 , ’*() e
and, since E is dermin by the crdinas {y, 7, ..., r,,,}, we mt
have * e E, k= 1, 2, ..., which immllaly impli that fl_,E

we wan to prove.


