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(Comm. by T. TAKA(I, M.I.A., March 12, 1943.)

In the first place, our noteD "On the semi-ordered ring and its
application to the spectral theorem" contained, in its proof of algebraic
part, a falsy argument, which we shall correct here. Namely, its lemma
in 1 (p. 557) was incorrect; it ought to have referred only to a
normal subgroup generated by positive elements. The following revised
proof runs more or less in the same line as Vernikoff-Krein-Tovbin’s,)

but we may put emphasis on that neither associativity (nor commuta-
tivity) nor ring property is used; we simply deal with abelian groups
with operators. Inde_ed, as an application of such mode of our approach,
we can determine the structure of the additive group of bounded
automorphisms of a semi-ordered abelian group (satisfying certain con-
ditions); this forming the second purpose of the pesent supplementary
note.

Let G be a semi-ordered abelian group with real multipliers:, such
that4)

(i)

(ii)

if x0 and y0 then z+y0,

if x0 and -x0 then x=O,

(iii) if x0 and .(real number)0 then ax=0.

Let G possess further an operator domain .2= (A} which is by itself
a semi-ordered abelian group (in the same sense as G) such as

(vii) if x0 (in G), A0 (in /2) then AxO (in G),

(viii) (A+B)x=Ax+Bx, A(x+y)=Ax+Ay, A(ax)=,.zAx,

and let moreover

(ix) .q possess an Archimedean unit I which satisfies Ix=x, x e G.

Then we have
Lemma. Every normal subgroup of G generated by a certain system

of positive elements is always allowable with respect to
For, our former proof remains valid certainly in this case.

Suppose now

(iv) G itself possess an Archimedean unit e,

1) Proc. 18 (1942), 555.
2) Sur les anneaux semi-ordonns, C.R. URSS, 30 (1941), p. 758.
3) Cf. a remark below
4) The numbers for the conditions are in accordahce with our former note.
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and furthermore

(v) if -e<:x<:e for every :>0 then x=O.

Consider the totality P of elements z in G such that

x:>-e for every 0.

Then we immediately verify the followings" every element 0 lies

in P; if z, y e P then x/y e P; if both x,-x e P then x=O (cf. (v))
if z e P and z (real number) 0 then ax e P; if x e P and A(e 9) :> 0

then Axe P (cf. (ix)).
But these mean that we may introduce in G a new semi-order,

under which P is the totality of positive elements (and 0), every posi-
sitive element in the original sense is also positive in the new sense,
and moreover, (vii) remains true with respect to the new semi-order.
Furthermore, from the above construction we readily see that under
this new sense of semi-order G satisfies

Cvi) if x <:: ee for every e => 0 then x 0,

or

(vi)’ inf ee existsand =0.
>0

Put now, for an element . in G,

,z(x) inf (a; ae > x)6

Then always (z(x)e-z 0 (in the new sense), according to (vi). Hence
the normal subgroup generated by an element of the fGrm a(x)e-x is,
by the above lemma, allowable (for ); we have a(x)ex modulo this
subgroup.

On returning to the original sense of semi-order we deduce from
these consideration the following" Let G satisfy (i)-(v), (vii)-(ix). Then,
firstly, every element x of G is congruent to the real multiple z(x)e of
e modulo a suitable allowable normal subgroup not coinciding with G,
whence modulo a certain maximal allowable normal subgroup of G"
thus, secondly, the intersection of all the maximal allowable normal

subgroups consists of 0 only (cf. (v)); thirdly, the factor group G/M
of G modulo a maximal allowable normal subgroup M is isomorphic
with the additive group of real numbers. Hence, G is operator-isomor-
phic to an additive group of real-valued bounded functions over the
space of maximal allowable normal subgroups; order being preserved
in the direct sense. If moreover the condition (vi) is fulfilled, then this
isomorphism is also an order-isomorphism. For, x 0 implies then
,,(x) > o.

5) When (v) is not satisfied, the elements x such as --ee < x ee for every > 0
form a normal subgroup N, the radical, which is allowable for P, as one sees readily,
and the semi-ordered factor group of G modulo N fulfills (v).

6) Either in the new or in the old sense of semi-order; the results are the same.
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From these follow now immediately the assertions in Theorems 1
and 2 of our former note which we restate here-

Let R be a semi-ordered ring with real multipliers and possessing
a ring-unit e which is at the same time an Archimedean unit. Sup-
pose R satisfy (v). Them R is ring-isomorphic to a certain ring R()
of real-valued bounded functions over the space of maximal normal
ideals" ,- x(M), such that e is represented by 1" e(M)l. In parti-
cular, R is both associative and commutative. The order is preserved
in he direction x-,(M). If R fulfills the stronger condition (vi), then
R is ring-order-isomorphic with R().

Remark. The above deduction depends on the existence of real
multipliers. But we may replace it, as in our former note), by

(iii)’ if nx 0 for a certain natural number n, then x 0,

of course, (v)(or (vi)) by the corresponding condition in our

former note). Namely using (iii)’ we extend G so as, firstly, to possess

rational multipliers, and then complete it by the norm x ll--inf (a; -ae
de) according to (v). The extension thus obtained has real mul-

tipliers (and satisfies the above prescribed conditions), and we may
apply our deduction to it.

Now, as an application of our proof to consider groups with ope-
rators rather than rings, let us study bounded automorphisms of a
semi-ordered group (without operators). Namely, let G be a semi-

ordered abelian group (such as (i), (ii), (iii)(or (iii)’)) (ithout ope-

rators), and A be an automorphism of G (simply as a group)v. Then,
if them exists a natural number n such as

nx xa -nx for every (e G) 0,

we call A bounded. The totality of the bounded automorphisms of G
forms a semi-ordered ring Ra by the usual operations

-=(), /’=+

and the semi-order-

A0 meaning- xa0 for every 0.
Now we have" if G satisfies (besides (i)-(iii)) (iv) and (v), then the
ring R of bounded automorphi.sms is, merdy as an additive group,
isomorphic to a svbgroup of G; order being preserved in the direct
sense of correspondence. To see this, again we first assume the ex-
istence of real multipliers. And, we consider R as an operator domain
9 for G. Then the above conditions (vii)-(ix) are satisfied. Therefore,
the intersection of all the maximal R-allowable normal subgroups is 0.
Denote their totality by ={M}. G]M, with a certain Me!l, is
the additive group of real numbers, and every element in G is con-

7) Thus A needs not preserve order relation in G.
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gruent modulo M to a real multiple of e. Hence, if an A e RG maps
e into M, then A maps the whole G into M. Further, if eA=O then
eA f M, whence G f M=0, G=0. Therefore, since eA+B-e’4+eB,
A(e/G) is determined uniquely by the image ea of e, and A--)e gives
an isomorphism of the additive group RG with the subgroup {eA} Of
G. (Indeed, if we put

eA.--wA(M)e mod. M,

then WA+B(M) wA(M)-I- wB(M), wAB(M)= ,,A(M). o.,B(.M) and the ring RG
is represented faithfully by the function ring {OA(M)) over 2). As
to the case without real multipliers, we have only to apply the above
remark and to observe that A is a difference of two positive operators,

say nI and hi-A, which secures (in combination with (v), of course,)
the possibility of extending A from G to its complete extension with
real multipliers. We see in this way that again A is determined uni-
quely by eA(G), and therefore, RG is isomorphic with {cA}. Since
A 0 implies ea 0, the last assertion of our theorem is evident.

Finally, we take this opportunity to correct som_e misprints in
our note1)" SM (X(M) >___ ) at the last line of p. 559 reads M$(x(M)g );

ie(M) and . ie(M) at the first line of p. 560 read respectively

Z 2i{e’ai(M)-e I(M)} and


