26. On a Characterisation of Join Homomorphic Transformation-lattice

By Atuo KOMATU.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., March 12, 1943.)

1. Introduction. A mapping f of a lattice L_1 into a lattice L_2 is called join homomorphic, when for any elements a, b of L_1 there exists the relation

$$f(a \cup b) = f(a) \cup f(b)$$
.

This mapping is order preserving, for, if a > b in L_1 , it follows $f(a)=f(a \cup b)=f(a) \cup f(b)$, i.e. f(a) > f(b) in L_2 .

If we define $f_1 > f_2$, when for any element a of $L_1 f_1(a) > f_2(a)$ is satisfied, then the set of all join homomorphic transformations forms a partially ordered set $\{f\}$. If L_2 is complete and completely distributive, then $\{f\}$ is a complete lattice. For there exist the following relations for any element a of L_1

$$(f_1 \cup f_2)(a) = f_1(a) \cup f_2(a) ,$$

$$\left(\bigcup_X (f_x \mid X)\right)(a) = \bigcup_X (f_x(a) \mid X) ,$$

$$(f_1 \cap f_2)(a) = \bigcup_X (g_x(a) \mid X) ,$$

$$\left(\bigwedge_X (f_x \mid X)\right)(a) = \bigcup_Y (h_y(a) \mid Y) ,$$

where $\{g_x | x \in X\}$ is the set of all transformations such that $g_x < f_1, f_2$, and $\{h_y | y \in Y\}$ is the set of all transformations such that $h_y < f_x$ for all x of X. This join $f_1 \cup f_2$, meet $f_1 \cap f_2$, complete join $\bigcup_X f_x$ and complete meet $\bigcap_X f_x$ are again clearly join homomorphic transformations.

In this paper we are concerned with the problem of a latticetheoretic characterisation of this join homomorphic transformation-lattice for the case, when L_2 is the two-element lattice $\{0, 1\}$.

Lemma 1. All ideals in L form a lattice, which is dual isomorphic with the join homomorphic transformation-lattice $\{f\}$ of L into $\{0, 1\}$.

Proof. Let f be a join homomorphic mapping of L into $\{0, 1\}$. Then the set $f^{-1}(0)$ is an ideal in L. For if $a, b \in f^{-1}(0)$, then $f(a \cup b) = f(a) \cup f(b) = 0$; therefore $a \cup b \in f^{-1}(0)$. And if $a \in f^{-1}(0)$, b < a, then clearly f(b) < f(a) = 0. Hence $f^{-1}(0)$ includes b.

Conversely, let \mathfrak{A} be an ideal in L, then the transformation f such that

$$f(a) = 0, \qquad a \in \mathfrak{A},$$

$$f(a) = 1, \qquad a \notin \mathfrak{A},$$

¹⁾ Cf. A. Komatu. On a Characterisation of Order Preserving Transformationlattice. Proc. 19 (1943), 27.

is clearly join homomorphic. Hence the correspondence between an ideal \mathfrak{A} in L and a join homomorphic transformation of L into $\{0, 1\}$ is one to one.

Furthermore this correspondence is a dual lattice isomorphism. Let f_1, f_2 be any two such transformations, and let $\mathfrak{A}_1, \mathfrak{A}_2$ be respectively the ideals $f_1^{-1}(0)$, $f_2^{-1}(0)$. Now if $(f_1 \cup f_2)(a) = f_1(a) \cup f_2(a) = 0$, then a is included in the ideal $\mathfrak{A}_1 \cap \mathfrak{A}_2$. Conversely, if $a \in \mathfrak{A}_1 \cap \mathfrak{A}_2$, then $f_1(a) = 0$ and $f_2(a) = 0$; therefore

 $(f_1 \cup f_2)(a) = 0$.

Hence

$$(f_1 \cup f_2)^{-1}(0) = \mathfrak{A}_1 \cap \mathfrak{A}_2$$

And if $(f_1 \cap f_2)(a) = 0$, then a is included in all such ideals \mathfrak{B}_x that $\mathfrak{B}_x \supset \mathfrak{A}_1, \mathfrak{A}_2$, i.e. $\mathfrak{B}_x \supset \mathfrak{A}_1 \cup \mathfrak{A}_2^{1}$. When we denote by $\mathfrak{A}_1 \lor \mathfrak{A}_2$ the least ideal \mathfrak{B} such that $\mathfrak{B} \supset \mathfrak{A}_1 \cup \mathfrak{A}_2$, i.e. $\mathfrak{A}_1 \lor \mathfrak{A}_2 = \bigwedge_X \mathfrak{B}_x$, then $a \in \mathfrak{A}_1 \lor \mathfrak{A}_2$. Conversely if $a \in \mathfrak{A}_1 \lor \mathfrak{A}_2$, then $a \in \mathfrak{B}_x$ for any ideal \mathfrak{B}_x . Hence for any transformation g_x such that $g_x < f_1, f_2$, we have $g_x(a) = 0$,

i.e.
$$(f_1 \cap f_2)(a) = \bigcup_X (g_x(a)) = 0$$
.

Therefore we conclude

$$(f_1 \cap f_2)^{-1}(0) = \mathfrak{A}_1 \ \forall \ \mathfrak{A}_2.$$

2. Transformation-lattice.

Lemma 2. Every element f of $\{f\}$ has at least one expression as the meet of some meet-irreducible²⁾ elements.

Proof. Let $f^{-1}(0) = \{a_x \mid X\}$, $\mathfrak{A}_x = a_x \cap L$, and let f_x be the join homomorphic transformation such that

$$f_x^{-1}(0) = \mathfrak{A}_x.$$

Then $f = \bigwedge_X f_x$. For from $f^{-1}(0) > f_x^{-1}(0)$ it follows $f < f_x$, i.e. $f < \bigwedge_X f_x$. And if $g < \bigwedge_X f_x$, then $g^{-1}(0) > f_x^{-1}(0)$, i.e. $g^{-1}(0) > \bigvee_X \mathfrak{A}_x = f^{-1}(0)$. Hence g < f. Therefore it must be $f = \bigwedge_X f_x$.

Every f_x is meet-irreducible or finite-meet-reducible into some meet-irreducible elements³⁾. For if

$$f_x = \bigcap_{y \in Y} \{g_y \mid Y\}$$
, $g_y^{-1}(0)$: principal ideal,

then $f_x < g_y$; hence $f_x^{-1}(0) = \mathfrak{A}_x > g_y^{-1}(0)$. If $\mathfrak{A}_x \neq g_y^{-1}(0)$ for all y, then $\mathfrak{A}_x \neq \bigcup_Y (g_y^{-1}(0))$. But $\mathfrak{A}_x = (\bigcap_Y g_y)^{-1}(0)$ is the least ideal, which includes all the ideal $g_y^{-1}(0)$. Whence for some finite elements $b_{y_j} \in g_{y_j}^{-1}(0)$

120

¹⁾ $\mathfrak{A}_1 \smile \mathfrak{A}_2$ means the set sum of \mathfrak{A}_1 and \mathfrak{A}_2 .

²⁾ a is said meet-irreducible, when, if $a = \bigwedge \{a_x \mid X\}$, then necessarily $a = a_x$ for some x. See. A. Komatu: On a Characterisation of Order Preserving Transformationlattice. Proc. **19** (1943), 27.

³⁾ a is said finite-meet-reducible or finite-meet-reducible into meet-irreducible elements, when, if $a = \bigwedge \{a_x \mid X\}$ with meet-irreducible elements a_x , then $a = a_{x_1} \frown \cdots \frown a_{x_n}$ for some finite subset x_1, \ldots, x_n of X.

No. 3.] On a Characterisation of Join Homomorphic Transformation-lattice. 121

$$(j=1, 2, ..., n)$$
 it must be $a_x < b_{\nu_1} \cup \cdots \cup b_{\nu_n}$.

Therefore
$$\mathfrak{A}_x < (\bigwedge_j g_{y_j})^{-1}(\mathbb{C}), \quad \text{i. e.} \quad \mathfrak{A}_x = \bigcup_j g_{y_j}^{-1}(\mathbb{C}).$$

This shows easily that f_x is finite-meet-reducible into some meet-irreducible elements.

Lemma 3. The subset L' of all meet-irreducible elements and all meet-finite-reducible elements in $\{f\}$ forms a lattice, which is dual isomorphic with L.

Proof. Let f be a meet-irreducible element or a finite-meet-reducible element, i. e. $f \in L'$, and let $f^{-1}(0) = \{a_x \mid X\}$ and $a_x \cap L = \mathfrak{A}_x$. Let f_x be the transformation such that $f_x^{-1}(0) = \mathfrak{A}_x$, then $f = \bigcap_x f_x$ as in lemma 2.

From the finite-meet-reducibility of f we can prove easily

$$f=f_{x_1}\cap\cdots\cap f_{x_n}$$

Whence $f^{-1}(0)$ is the least ideal which includes $f_{x_i}^{-1}(0) = \mathfrak{A}_{x_i}$ (i = 1, 2, ..., n). Therefore $f^{-1}(0)$ is the principal ideal

$$(a_{x_1}\cup\cdots\cup a_{x_m})\cap L$$
.

From lemma 1 and 2 we conclude that L is dually lattice isomorphic with L.

Lemma 4. Join in $\{f\}$ is continuous with respect to the generalized (o) topology¹) of $\{f\}$. Meet is not necessarily continuous.

Proof. Let a directed set of elements $\{f_x | X\}$ converge to f. Then there exist two directed sets of elements $\{\varphi_x | X\}$, $\{\psi_x | X\}$ such that

$$\begin{array}{l} \varphi_{x_1} < \varphi_{x_2} \,, \\ \psi_{x_1'} > \psi_{x_2} \,, \end{array} \right\} \quad \text{for } x_1 < x_2 \, \text{ in } X \,, \\ \varphi_x < f_x < \psi_x \quad \text{for any } x \in X \,, \end{array}$$

and

$$\bigcup_{X} \{\varphi_x \mid x \in X\} = \lim f_x = \bigwedge_X \{\psi_x \mid x \in X\}.$$

Hence for any element g of $\{f\}$

(1)
$$\begin{cases} \varphi_{x_1} \cup g < \varphi_{x_2} \cup g \\ \psi_{x_1} \cup g > \psi_{x_2} \cup g \end{cases} \text{ for any } x_1 < x_2 \text{ in } X, \\ \varphi_x \cup g < f_x \cup g < \psi_x \cup g \text{ for any } x \in X, \text{ and } \end{cases}$$

(2)
$$\left(\bigcup_{X} (\varphi_{x} \mid X)\right) \cup g = (\lim f_{x}) \cup g = \left(\bigcap_{X} (\psi_{x} \mid X)\right) \cup g.$$

It is clear that $(\bigcup_X \varphi_x) \cup g = \bigcup_X (\varphi_x \cup g)$. Furthermore we can prove easily $(\bigwedge_X \psi_x) \cup g = \bigwedge_X (\psi_x \cup g)$. For if $a \in ((\bigwedge_X \psi_x) \cup g)^{-1}(0)$, then $a \in (\bigwedge_X \psi_x)^{-1}(0)$ and $a \in g^{-1}(0)$; by the first relation it follows $a < a_{x_1} \cup a_{x_2} \cup \cdots \cup a_{x_n}$ for some finite $a_{x_i} \in \psi_{x_i}^{-1}(0)$ (i=1, ..., n). Let x be an

1) Cf. G. Birkhoff: Lattice Theory, p. 32.

A. KOMATU.

[Vol. 19.

element of X such that for every $x_i \ x > x_i$, then $\psi_x < \psi_{x_i}$, i.e. $\psi_x^{-1}(0) > \psi_{x_i}^{-1}(0)$. Hence every a_{x_i} is included in the ideal $\psi_x^{-1}(0)$ and so is a. Therefore we conclude for this x that $a \in (\psi_x \cup g)^{-1}(0) < \bigcup_X ((\psi_x \cup g)^{-1}(0))$, i.e. $(\bigwedge_Y \psi_x) \cup g > \bigwedge_Y (\psi_x \cup g)$.

The inverse order is obvious from $\psi_x \cup g > (\bigwedge \psi_x) \cup g$, hence

$$(\bigwedge_X \psi_x) \cup g = \bigwedge_X (\psi_x \cup g).$$

The formula (2) now takes the form

(3)
$$\bigcup_X (\varphi_x \cup g) = (\lim f_x) \cup g = \bigwedge_X (\psi_x \cup g).$$

From (1) and (3) we see that $\lim (f_x \cup g) = (\lim f_x) \cup g$, i.e. $\{f_x \cup g \mid X\}$ converges to $f \cup g$.

3. Characterisation of the transformation-lattice.

Lemma 5. Let L^* be a lattice with the following properties: i) complete, ii) every element a is a meet of meet-irreducible elements. iii) join is continuous with respect to the generalized (o)-topology of L^* .

Then, if $a = \bigwedge_X a_x = \bigwedge_Y b_y$ are any two reductions of a into infinite meet-irreducible components, we can select for every y suitably some finite x_i (i=1, 2, ..., n) such that

$$b_{y} > a_{x_1} \cap \cdots \cap a_{x_n}$$

and for every x some finite y_j (j=1, 2, ..., m) such that

$$a_x > b_{y_1} \cap \cdots \cap b_{y_m}$$

Proof. Let Γ be the set of all finite subsets $\{a\}$ of X, then Γ is a directed set. If $\alpha = \{x_1, x_2, ..., x_n\}$ and $a_{\alpha} = a_{x_1} \cap \cdots \cap a_{x_n}$, then for $\alpha < \beta$ in Γ we have $a_{\alpha} > a_{\beta}$ in L^* .

Clearly $a < a_a$ for every $a \in \Gamma$, hence

$$(4) a < \bigwedge_{r} a_{a}.$$

But if we select $a_x \in \Gamma$ suitably for every $x \in X$ such that $x \in a_x$, then $a_x > a_{a_x}$ in L^* ; hence

(5)
$$a = \bigwedge_X a_x > \bigwedge_X a_{a_x} > \bigwedge_\Gamma a_a$$

From (4) and (5) it follows that the directed set of elements $\{a_a | \Gamma\}$ converges to a. From the property iii) of L^*

$$b_y = b_y \cup a = b_y \cup (\bigwedge_{\Gamma} a_a) = \bigwedge_{\Gamma} (a_a \cup b_y).$$

From the property ii)

$$a_a \cup b_y = \bigwedge_{Z_a} c_z$$
, c_z : meet-irreducible,

i. e. $b_y = \bigcap_{a \in \Gamma} (\bigcap_{Z_{a}} c_z)$. But b_y is meet-irreducible, hence $b_y = c_z > a_a \cup b_y$ for some $z \in Z_a$.

Therefore it must be $b_y = a_a \cup b_y$, i.e.

No. 3.] On a Characterisation of Join Homomorphic Transformation-lattice. 123

$$b_y > a_a = a_{x_1} \cap \cdots \cap a_{x_n}$$
.

Similarly we can prove for every x with some finite y_j (j=1,2,...,m) $a_x > b_{y_1} \cap \cdots \cap b_{y_m}$.

Theorem. Let L^* be a lattice with the following properties: i) complete ii) every element a is a meet of meet-irreducible elements. iii) join is continuous with respect to the generalized (o)-topology of L^* . iv) the set L of all meet-irreducible elements and all finite-meet-reducible elements forms a lattice with the (relative) order of L^* . Then L^* is isomorphic with the join homomorphic transformation-lattice of L' into $\{0, 1\}$, where L' is dual isomorphic to the lattice L.

Proof. (1) One to one Correspondence.

Let $a = \bigcap_{X} a_x$ be an expression of a with meet-irreducible elements $\{a_x \mid X\}$. Let $a'_x \in L'$ be the element which corresponds to $a_x \in L$, and let f_x be the join homomorphic mapping of L' into $\{0, 1\}$ such that

$$f_x^{-1}(0) = a'_x \cap L' = \mathfrak{A}'_x$$

Let f be the mapping of L' into $\{0, 1\}$ such that

$$f^{-1}(0) = \bigcup \mathfrak{A}'_x.$$

Now we consider the correspondence $a \to f$. Clearly $a_x \to f_x$. This correspondence is uniquely determined. For if $a = \bigwedge_X a_x = \bigwedge_Y b_y$, then from lemma 5 for every y with some $x_i \in X$ (i=1, 2, ..., n)

 $b_y > a_{x_1} \cap \cdots \cap a_{x_n}.$

Hence b'_y is included in the ideal $\bigvee_i (a'_{x_i} \cap L') = \bigvee_i \mathfrak{A}'_{x_i}$

i. e.

$$\mathfrak{B}'_{y}=b'_{y}\cap L'\subset \bigcup_{i=1}^{n}\mathfrak{N}'_{x_{i}}.$$

Similarly for every $x \mathfrak{A}'_x \subset \bigcup \mathfrak{B}'_{y_j}$, whence

$$\bigvee_X \mathfrak{A}'_x = \bigvee_Y \mathfrak{B}'_y .$$

This correspondence is one to one. For if $a = \bigwedge_X a_x$, $b = \bigwedge_Y b_y$, $a \neq b$, then at least for one a_x (or b_y) there exist no finite subsets y_1, \ldots, y_m (or x_1, \ldots, x_n) such that

$$a_x > b_{y_1} \cap \cdots \cap b_{y_m}.$$

Hence in $L' a'_x \notin \bigcup \mathfrak{B}'_y$, therefore

$$f_a^{-1}(0) \neq f_b^{-1}(0)$$
, i.e. $f_a \neq f_b$.

(2) Let f be a join homomorphic transformation of L' into $\{0, 1\}$, and let $f^{-1}(0) = \mathfrak{A}' = \{a'_x \mid X\}$. Clearly

$$\mathfrak{A}' = \bigcup_X \mathfrak{A}'_x = \bigcup_Y (a'_x \cap L').$$

From completeness of L^* there exists an element a such that

A. KOMATU.

 $a=\bigwedge_{x}a_{x}$.

 $a \rightarrow f$.

Hence

(3) Meet homomorphism.

Let $a = \bigwedge_X a_x$, $b = \bigwedge_Y b_y$, then $a \frown b = (\bigwedge_X a_x) \frown (\bigwedge_Y b_y)$: Let f_a, f_b , and $f_{a \frown b}$ be respectively the following mappings of L' into $\{0, 1\}$ such that $f^{-1}(0) = \forall (a' \frown L')$

$$\begin{split} f_a^{-1}(0) &= \bigcup_X^{\cup} \left(a'_x \cap L' \right), \\ f_b^{-1}(0) &= \bigcup_Y^{\cup} \left(b'_y \cap L' \right), \\ f_{a' \cap b}^{-1}(0) &= \bigcup_{X \colon Y} \left\{ (a_x \cap L'), \left(b'_y \cap L' \right) \right\}, \end{split}$$

then clearly

 $f_{a\cap b}=f_a\cap f_b.$

The last formula follows from the relation

$$\bigcup_{X,Y} \{a_x \cap L'), \ (b'_y \cap L')\} = \left(\bigcup_X (a'_x \cap L')\right) \cup \left(\bigcup_Y (b_y \cap L')\right).$$

We can easily prove from 1)-3) that this correspondence is isomorphic.

Corollary. The lattice L of all join homomorphic transformations of finite lattice L' into $\{0, 1\}$ is dual isomorphic to L'.