1. A Note on Symmetric Algebras.

By Masaru OSIMA.

Department of Mathematics, Okayama University. (Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1952.)

The main purpose of the present note is to prove the following theorem¹⁾ by a new method.

Theorem 1. An algebra A over an algebraically closed field is symmetric if and only if its basic algebra is symmetric.

As an application, we can show that absolutely uni-serial algebras are symmetric.

In what follows we assume always that A is an algebra with unit element over an algebraically closed field K. Let S(a) and R(a)be the left and the right regular representations of A, formed by means of a basis (u_i) . A is called a Frobenius algebra if S(a) and R(a) are similar:

(1)
$$S(a) = P^{-1}R(a)P.$$

In particular, A is called a symmetric algebra when the matrix P can be chosen as a symmetric matrix²⁾.

Let $A = A^* + N$ be a splitting of an algebra A into a direct sum of a semisimple subalgebra A^* and the radical N of A. We shall denote by

$$A^* = A_1^* + A_2^* + \cdots + A_n^*$$

the unique splitting of A^* into a direct sum of simple invariant subalgebras. Let $e_{\kappa,\alpha\beta}$ $(\alpha, \beta = 1, 2, \ldots, f(\kappa))$ be a set of matrix units for the simple algebra A^*_{κ} . We set $e = \sum e_{\kappa,11}$. Then eAe is an algebra with unit element e, which is called the *basic algebra*³⁾ of A. As one can easily see, the radical of eAe is $eAe \cap N = eNe$ and eAe/eNe is direct sum of fields.

Let now

$$(2) A=A_1 > A_2 > \cdots > A_t > (0)$$

be a composition series for A considered as an (A, A) space. Then corresponding to (2), we obtain a composition series for eAe considered as an (eAe, eAe) space

$$(3) eAe = eA_1e > eA_2e > \cdots > eA_te > (0)$$

¹⁾ See Nesbitt and Scott [5] p. 549.

²⁾ Nesbitt and Nakayama [4].

³⁾ Nesbitt and Scott [5].

M. Osima.

Since K is algebraically closed, the rank of eAe is t. Let the composition factor group A_u/A_{u+1} be of type (κ_u, λ_u) , $(u=1, 2, \ldots, t)$. Then we can choose a basis b_1, b_2, \ldots, b_t of eAe corresponding to (3) such that $b_u \in eA_u e$, $b_u \notin eA_{u+1}e$ and $e_{\kappa_u, 11} b_u e_{\lambda_u, 11} = b_u$. Then the elements

$$(4) e_{\kappa_{u}, \ \alpha^{1}} b_{u} e_{\lambda_{u}, \ 1\beta}$$

 $(u = 1, 2, ..., t; a = 1, 2, ..., f(\kappa_u); \beta = 1, 2, ..., f(\lambda_u))$ form a Kbasis of A. This basis is called the *Cartan basis*⁴⁾ of A. Let us denote by c_{uvw} the multiplication constants of the elements b_u (u = 1, 2, ..., t),

$$(5) b_u b_v = \sum c_{uvw} b_w.$$

If $\lambda_u \neq \kappa_v$, then $c_{uvw} = 0$ for every w. Further if $\lambda_u = \kappa_v$, then $c_{uvw} = 0$ for either $\kappa_u \neq \kappa_w$ or $\lambda_v \neq \lambda_w$. Let $S_0(eae)$ and $R_0(eae)$ be the left and the right regular representations of eAe, formed by means of (b_u) . Then

(6)
$$S_0(b_u) = (c_{uvw})_{wv}, \quad R_0(b_v) = (c_{uvw})_{uw}.$$

Let us assume that A is a symmetric algebra and let S(a) and R(a) be the regular representations of A, formed by means of the Cartan basis $(e_{\kappa_{u}, a1}b_{u}e_{\lambda_{u}, 1\beta})$;

(7)
$$\begin{cases} a(e_{\kappa_{u}, a1}b_{u}e_{\lambda_{u}, 1\beta}) = (e_{\kappa_{u}, a1}b_{u}e_{\lambda_{u}, 1\beta})S(a) \\ (e_{\kappa_{u}, a1}b_{u}e_{\lambda_{u}, 1\beta})a = (e_{\kappa_{u}, a1}b_{u}e_{\lambda_{u}, 1\beta})R'(a) \end{cases}$$

where R'(a) denotes the transpose of matrix R(a). There exists a symmetric non-singular matrix P such that $S(a) = P^{-1}R(a)P$. If we set

$$(8) \qquad (h_{u,\beta\alpha}) = (e_{\kappa_{u},\alpha} b_{u} e_{\lambda_{u},\beta}) P^{-1},$$

then $(e_{\kappa_u, \alpha 1}b_u e_{\lambda_u, 1\beta})$ and $(h_{u, \beta\alpha})$ are the quasi-complementary bases⁵⁾ of A. Hence we have⁶⁾

$$(9) h_{u, \beta a} = e_{\lambda_u, \beta 1} d_u e_{\kappa_u, 1a}$$

where (d_u) , $(u=1,2,\ldots,t)$ is a basis of *eAe* and d_u is of type (λ_u, κ_u) , that is,

(10)
$$d_u = e_{\lambda_u, 11} d_u e_{\kappa_u, 11}.$$

Since $(e_{\kappa_u, \alpha 1} b_u e_{\lambda_u, 1\beta})$ and $(e_{\lambda_u, \beta 1} d_u e_{\kappa_u, 1\alpha})$ are quasi-complementary, we have

⁴⁾ Nesbitt [3], Scott [7]. Cf. also Nesbitt and Scott [5].

⁵⁾ See Brauer [1].

⁶⁾ Osima [6].

No. 1.] A Note on Symmetric Algebras.

(11)
$$\begin{cases} a \left(e_{\lambda_{u},\,\beta 1} \, d_{u} \, e_{\kappa_{u},\,1\alpha} \right) = \left(e_{\lambda_{u},\,\beta 1} \, d_{u} \, e_{\kappa_{u},\,1\alpha} \right) R \left(a \right) \\ \left(e_{\lambda_{u},\,\beta 1} \, d_{u} \, e_{\kappa_{u},\,1\alpha} \right) a = \left(e_{\lambda_{u},\,\beta 1} \, d_{u} \, e_{\kappa_{u},\,1\alpha} \right) S' \left(a \right). \end{cases}$$

Proof of Theorem 1. Let A be symmetric and let $(e_{\kappa_u, \alpha 1} b_u e_{\lambda_u, 1\beta})$ be the Cartan basis of A. We arrange the elements of the basis $(e_{\kappa_u, \alpha 1} b_u e_{\lambda_u, 1\beta})$ as follows:

(12)
$$b_1, b_2, \ldots, b_t, \ldots, e_{\kappa_u, a^1} b_u e_{\lambda_u, 1\beta}, \ldots$$

Then from (9) and (10) it follows that the elements of the basis $(e_{\lambda_{u},\beta_{1}} d_{u} e_{\kappa_{u},1\alpha})$ are ordered as follows:

(13)
$$d_1, d_2, \ldots, d_{\iota}, \ldots, e_{\lambda_u, \beta 1} d_u e_{\kappa_u, 1\alpha}, \ldots$$

Hence, by (8), (9) and (13) we have

$$P^{-1} = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix},$$

where P_1 is a matrix of degree t. Since P^{-1} is symmetric, P_1 is also a symmetric, non-singular matrix. Further, as one can easily see, for any *eae* in *eAe*

$$S(eae) = \begin{pmatrix} S_0(eae) & 0 \\ 0 & 0 \end{pmatrix}, R(eae) = \begin{pmatrix} R_0(eae) & 0 \\ 0 & 0 \end{pmatrix}$$

Hence $S_0(eae) = P_1 R_0(eae) P_1^{-1}$ and eAe is symmetric.

Now we prove the converse. Suppose that eAe is symmetric: $S_0(eae) = Q^{-1}R_0(eae)Q$ where Q is a symmetric matrix. We set $d_u = (b_u)Q^{-1}$. Then (b_u) and (d_u) are quasi-complementary bases of eAe. Hence

(14)
$$\begin{cases} eae (d_u) = (d_u) R_0 (eae) \\ (d_u) eae = (d_u) S'_0 (eae) . \end{cases}$$

Then, by (6)

(15)
$$\begin{cases} d_w b_u = \sum_v c_{uvw} d_v \\ b_v d_w = \sum_u^v c_{uvw} d_u \end{cases}$$

The elements $e_{\lambda_u,\beta_1} d_u e_{\kappa_u,\alpha}$ $(u = 1, 2, \ldots, t; a = 1, 2, \ldots, f(\kappa_u); \beta = 1, 2, \ldots, f(\lambda_u)$ form the Cartan basis of A. (5) yields

Here, if $c_{uvw} \neq 0$, then $\kappa_w = \kappa_u$ and $\lambda_w = \lambda_v$. Hence, from (15) we obtain

(16)
$$\begin{cases} e_{\lambda_{v}, v_{1}} d_{w} e_{\kappa_{u}, 1\alpha} \cdot e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1\beta} = \sum_{v} c_{uvv} e_{\lambda_{v}, v_{1}} d_{v} e_{\lambda_{u}, 1\beta} \\ e_{\kappa_{v}, \mu 1} b_{v} e_{\lambda_{v}, 1v} \cdot e_{\lambda_{v}, v_{1}} d_{w} e_{\kappa_{u}, 1\alpha} = \sum_{u}^{v} c_{uvv} e_{\kappa_{v}, \mu 1} d_{u} e_{\kappa_{u}, 1\alpha}. \end{cases}$$

This implies that

(17)
$$\begin{cases} a(e_{\lambda_{u},\,\beta_{1}}\,d_{u}\,e_{\kappa_{u},\,1\alpha}) = (e_{\lambda_{u},\,\beta_{1}}\,d_{u}\,e_{\kappa_{u},\,1\alpha})\,R(a)\\ (e_{\lambda_{u},\,\beta_{1}}\,d_{u}\,e_{\kappa_{u},\,1\alpha})a = (e_{\lambda_{u},\,\beta_{1}}\,d_{u}\,e_{\kappa_{u},\,1\alpha})\,S'(a)\,, \end{cases}$$

whence A is symmetric.

Theorem 2. Let A be a uni-serial algebra over an algebraically closed field. Then A is symmetric.

Proof. We may assume without loss of generality that A is primary: $A = A^* + N$ where A^* is a simple subalgebra. We denote by $e_{\alpha\beta}$ $(\alpha, \beta = 1, 2, \ldots, f)$ a set of matrix units for the simple algebra A^* . The radical N is a principal ideal: N=dA=Adwhere $e_{\alpha\alpha} d = de_{\alpha\alpha}$, $(\alpha = 1, 2, \ldots, f)$. The basic algebra eAe, $(e=e_{11})$, is also uni-serial and eNe=eAede = edeAe where ed=de=ede. Let ρ be the exponent of N, that is, $N^{\rho-1} \neq 0$, $N^{\rho} = 0$. Then the elements

(18)
$$e, de, d^2 e, \ldots, d^{p-1} e$$

form a basis $(d^{\kappa}e)$ of eAe. This impries that eAe is commutative. If we set

(19)
$$(ed^{\rho-1}, ed^{\rho-2}, \ldots, ed, e) = (e, de, \ldots, d^{\rho-2}e, d^{\rho-1}e)P$$
,

then P is a symmetric, non-singular matrix. Hence (ed^{λ}) is a basis of *eAe*. Let $S_0(eae)$ and $R_0(eae)$ be the left and the right regular representations of *eAe*, formed by means of the basis (d^*e) . Then $R_0(eae)$ is the left regular representation of *eAe*, formed by means of the basis (ed^{λ}) whence $S_0(eae) = P^{-1}R_0(eae)P$. This implies that *eAe* is symmetric. Then it follows from Theorem 1 that A is symmetric.

Corollary. Absolutely uni-serial algebras are symmetric.

References.

1) R. Brauer: On hypercomplex arithmetic and a theorem of Speiser. Festschrift zum 60 Geburtstag von Prof. Dr. Andreas Speiser (1945).

2) T. Nakayama and G. Azumaya: On absolutely uni-serial algebras. Jap. J. Math., 19, (1948).

3) C. Nesbitt: On the regular representations of algebras. Ann. of Math., **39** (1938).

4) C. Nesbitt and T. Nakayama: Note on symmetric algebras. Ann. of Math., **39** (1938).

5) C. Nesbitt and W.M. Scott: Some remarks on algebras over an algebraically closed field. Ann. of Math., 44 (1943).

6) M. Osima: On the Schur relations for the representations of a Frobenius algebra, forthcoming.

7) W.M. Scott: On matrix algebras over an algebraically closed field. Ann. of Math., **43** (1942).