## 1. A Note on Symmetric Algelras.

By Masaru Osima.<br>Department of Mathematics, Okayama University. (Comm. by Z. Suetuna, m.J.a., Jan. 12, 1952.)

The main purpose of the present note is to prove the following theorem ${ }^{1)}$ by a new method.

Theorem 1. An algebra $A$ over an algebraically closed field is symmetric if and only if its basic algebra is symmetric.

As an application, we can show that absolutely uni-serial algebras are symmetric.

In what follows we assume always that $A$ is an algebra with unit element over an algebraically closed field $K$. Let $S(a)$ and $R(a)$ be the left and the right regular representations of $A$, formed by means of a basis ( $u_{i}$ ). $A$ is called a Frobenius algebra if $S(a)$ and $R(a)$ are similar :

$$
\begin{equation*}
S(a)=P^{-1} R(a) P \tag{1}
\end{equation*}
$$

In particular, $A$ is called a symmetric algebra when the matrix $P$ can be chosen as a symmetric matrix ${ }^{2)}$.

Let $A=A^{*}+N$ be a splitting of an algebra $A$ into a direct sum of a semisimple subalgebra $A^{*}$ and the radical $N$ of $A$. We shall denote by

$$
A^{*}=A_{1}^{*}+A_{2}^{*}+\cdots \cdots+A_{n}^{*}
$$

the unique splitting of $A^{*}$ into a direct sum of simple invariant subalgebras. Let $e_{\kappa, \alpha \beta}(\alpha, \beta=1,2, \ldots, f(\kappa))$ be a set of matrix units for the simple algebra $A_{\kappa}^{*}$. We set $e=\sum e_{\kappa, 11}$. Then $e A e$ is an algebra with unit element $e$, which is called the basic algebra ${ }^{3)}$ of $A$. As one can easily see, the radical of $e A e$ is $e A e \cap N=e N e$ and $e A e / e N e$ is direct sum of fields.

Let now

$$
\begin{equation*}
A=A_{1} \supset A_{2} \supset \cdots \cdots \supset A_{t} \supset(0) \tag{2}
\end{equation*}
$$

be a composition series for $A$ considered as an $(A, A)$ space. Then corresponding to (2), we obtain a composition series for $e A e$ considered as an ( $e A e, e A e$ ) space

$$
\begin{equation*}
e A e=e A_{1} e>e A_{2} e>\cdots \cdots>e A_{\imath} e>(0) \tag{3}
\end{equation*}
$$

1) See Nesbitt and Scott [5] p. 549.
2) Nesbitt and Nakayama [4].
3) Nesbitt and Scott [5].

Since $K$ is algebraically closed, the rank of $e A e$ is $t$. Let the composition factor group $A_{u} / A_{u+1}$ be of type ( $\kappa_{u}, \lambda_{u}$ ), $(u=1,2, \ldots, t$ ). Then we can choose a basis $b_{1}, b_{2}, \ldots \ldots, b_{t}$ of $e A e$ corresponding to (3) such that $b_{u} \in e A_{u} e, b_{u} \notin e A_{u+1} e$ and $e_{\kappa_{u}, 11} b_{u} e_{\lambda_{u}, 11}=b_{u}$. Then the elements

$$
\begin{equation*}
e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1 \beta} \tag{4}
\end{equation*}
$$

$\left(u=1,2, \ldots, t ; \alpha=1,2, \ldots, f\left(\kappa_{u}\right) ; \beta=1,2, \ldots, f\left(\lambda_{u}\right)\right)$ form a $K-$ basis of $A$. This basis is called the Cartan basis ${ }^{4)}$ of $A$. Let us denote by $c_{u v w}$ the multiplication constants of the elements $b_{u}(u=$ $1,2, \ldots, t$ ),

$$
\begin{equation*}
b_{u} b_{v}=\sum c_{u v w} b_{w} \tag{5}
\end{equation*}
$$

If $\lambda_{u} \neq \kappa_{v}$, then $c_{u v v}=0$ for every $w$. Further if $\lambda_{u}=\kappa_{v}$, then $c_{u v w}=0$ for either $\kappa_{u} \neq \kappa_{w}$ or $\lambda_{v} \neq \lambda_{w}$. Let $S_{0}$ (eae) and $R_{0}(e a e)$ be the left and the right regular representations of $e A e$, formed by means of ( $b_{u}$ ). Then

$$
\begin{equation*}
S_{0}\left(b_{u}\right)=\left(c_{u v v}\right)_{w v}, \quad R_{0}\left(b_{v}\right)=\left(c_{u v v}\right)_{u v v} . \tag{6}
\end{equation*}
$$

Let us assume that $A$ is a symmetric algebra and let $S(\alpha)$ and $R(a)$ be the regular representations of $A$, formed by means of the Cartan basis ( $e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1 \beta}$ );

$$
\left\{\begin{array}{l}
a\left(e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1 \beta}\right)=\left(e_{\kappa_{u}}, \alpha 1 b_{u} e_{\lambda_{u}, 1 \beta}\right) S(\alpha)  \tag{7}\\
\left(e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1 \beta}\right) \alpha=\left(e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1 \beta}\right) R^{\prime}(\alpha)
\end{array}\right.
$$

where $R^{\prime}(a)$ denotes the transpose of matrix $R(\alpha)$. There exists a symmetric non-singular matrix $P$ such that $S(a)=P^{-1} R(a) P$. If we set

$$
\left(h_{u, \beta \alpha}\right)=\left(e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1 \beta}\right) P^{-1}
$$

then ( $e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1 \beta}$ ) and ( $h_{u, \beta \alpha}$ ) are the quasi-complementary bases ${ }^{5)}$ of A. Hence we have ${ }^{6)}$

$$
\begin{equation*}
h_{u, \beta \alpha}=e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha} \tag{9}
\end{equation*}
$$

where $\left(d_{u}\right),(u=1,2, \ldots, t)$ is a basis of $e A e$ and $d_{u}$ is of type $\left(\lambda_{u}, \kappa_{u}\right)$, that is,

$$
\begin{equation*}
d_{u}=e_{\lambda_{u}, 11} d_{u} e_{\kappa_{u}, 11} \tag{10}
\end{equation*}
$$

Since $\left(e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1 \beta}\right)$ and ( $\left.e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}\right)$ are quasi-complementary, we have

[^0]\[

\left\{$$
\begin{array}{l}
\alpha\left(e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}\right)=\left(e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}\right) R(\alpha)  \tag{11}\\
\left(e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}\right) a=\left(e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}\right) S^{\prime}(\alpha) .
\end{array}
$$\right.
\]

Proof of Theorem 1. Let $A$ be symmetric and let $\left(e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1 \beta}\right)$ be the Cartan basis of $A$. We arrange the elements of the basis $\left(e_{\kappa_{u}, \alpha 1} b_{u} e_{\lambda_{u}, 1 \beta}\right)$ as follows:

$$
\begin{equation*}
b_{1}, b_{2}, \ldots \ldots, b_{t}, \ldots \ldots, e_{\kappa_{u}, \alpha_{1}} b_{u} e_{\lambda_{u}, 1 \beta}, \ldots \ldots \tag{12}
\end{equation*}
$$

Then from (9) and (10) it follows that the elements of the basis ( $e_{\lambda_{u},{ }_{1} 1} d_{u} e_{\kappa_{u}, 1 \alpha}$ ) are ordered as follows:

$$
\begin{equation*}
d_{1}, d_{2}, \ldots \ldots, d_{t}, \ldots \ldots, e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}, \ldots \ldots \tag{13}
\end{equation*}
$$

Hence, by (8), (9) and (13) we have

$$
P^{-1}=\left(\begin{array}{cc}
P_{1} & 0 \\
0 & P_{2}
\end{array}\right)
$$

where $P_{1}$ is a matrix of degree $t$. Since $P^{-1}$ is symmetric, $P_{1}$ is also a symmetric, non-singular matrix. Further, as one can easily see, for any eae in $e A e$

$$
S(e a e)=\left(\begin{array}{cc}
S_{0}(e a e) & 0 \\
0 & 0
\end{array}\right), \quad R(e a e)=\left(\begin{array}{cc}
R_{0}(e a e) & 0 \\
0 & 0
\end{array}\right)
$$

Hence $S_{0}(e a e)=P_{1} R_{0}(e a e) P_{1}^{-1}$ and $e A e$ is symmetric.
Now we prove the converse. Suppose that $e A e$ is symmetric: $S_{0}($ eae $)=Q^{-1} R_{0}($ eae $) Q$ where $Q$ is a symmetric matrix. We set $d_{u}=\left(b_{u}\right) Q^{-1}$. Then $\left(b_{u}\right)$ and $\left(d_{u}\right)$ are quasi-complementary bases of $e A e$. Hence

$$
\left\{\begin{array}{l}
\text { eae }\left(d_{u}\right)=\left(d_{u}\right) R_{0}(\text { eae })  \tag{14}\\
\left(d_{u}\right) \text { eae }=\left(d_{u}\right) S_{0}^{\prime}(\text { eae })
\end{array}\right.
$$

Then, by (6)

$$
\left\{\begin{array}{l}
d_{w v} b_{u}=\sum_{v} c_{u v w} d_{v}  \tag{15}\\
b_{v} d_{w}=\sum_{u} c_{u v w} d_{u}
\end{array}\right.
$$

The elements $e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}\left(u=1,2, \ldots \ldots, t ; \alpha=1,2, \ldots \ldots, f\left(\kappa_{u}\right)\right.$; $\beta=1,2, \ldots ., f\left(\lambda_{u}\right)$ ) form the Cartan basis of $A$. (5) yields

$$
\begin{array}{rlrl}
e_{\kappa_{u}, \alpha_{1}} b_{u} e_{\lambda_{u}, 1 \beta} \cdot e_{\kappa_{v}, \mu 1} b_{v} e_{\lambda_{v}, 1 v} & =\sum c_{u v w} e_{\kappa_{u}, \alpha 1} b_{w} e_{\lambda_{v}, 1 v} & & \lambda_{u}=\kappa_{v}, \beta=\mu \\
& & \text { in other cases. }
\end{array}
$$

Here, if $c_{u v v} \neq 0$, then $\kappa_{w}=\kappa_{u}$ and $\lambda_{w}=\lambda_{v}$. Hence, from (15) we obtain

This implies that

$$
\left\{\begin{array}{l}
a\left(e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}\right)=\left(e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}\right) R(a)  \tag{17}\\
\left(e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}\right) \alpha=\left(e_{\lambda_{u}, \beta 1} d_{u} e_{\kappa_{u}, 1 \alpha}\right) S^{\prime}(a),
\end{array}\right.
$$

whence $A$ is symmetric.
Theorem 2. Let $A$ be a uni-serial algebra over an algebraically closed field. Then $A$ is symmetric.

Proof. We may assume without loss of generality that $A$ is primary: $A=A^{*}+N$ where $A^{*}$ is a simple subalgebra. We denote by $e_{\alpha \beta}(\alpha, \beta=1,2, \ldots \ldots, f)$ a set of matrix units for the simple algebra $A^{*}$. The radical $N$ is a principal ideal: $N=d A=A d$ where $e_{\alpha \alpha} d=d e_{\alpha \alpha},(\alpha=1,2, \ldots \ldots, f)$. The basic algebra $e A e$, $\left(e=e_{11}\right)$, is also uni-serial and $e N e=e A e d e=e d e A e$ where $e d=d e=e d e$. Let $\rho$ be the exponent of $N$, that is, $N^{\rho-1} \neq 0, N^{\rho}=0$. Then the elements

$$
\begin{equation*}
e, d e, d^{2} e, \ldots \ldots, d^{p-1} e \tag{18}
\end{equation*}
$$

form a basis $\left(d^{k} e\right)$ of $e A e$. This impries that $e A e$ is commutative. If we set

$$
\begin{equation*}
\left(e d^{\rho-1}, e d^{\rho-2}, \ldots, e d, e\right)=\left(e, d e, \ldots, d^{p-2} e, d^{\rho-1} e\right) P \tag{19}
\end{equation*}
$$

then $P$ is a symmetric, non-singular matrix. Hence $\left(e d^{\lambda}\right)$ is a basis of $e A e$. Let $S_{0}(e a e)$ and $R_{0}(e a e)$ be the left and the right regular representations of $e A e$, formed by means of the basis ( $d^{k} e$ ). Then $R_{0}(e a e)$ is the left regular representation of $e A e$, formed by means of the basis (ed ${ }^{\lambda}$ ) whence $S_{0}(e a e)=P^{-1} R_{0}(e a e) P$. This implies that $e A e$ is symmetric. Then it follows from Theorem 1 that $A$ is symmetric.

Corollary. Absolutely uni-serial algebras are symmetric.

## References.

1) R. Brauer: On hypercomplex arithmetic and a theorem of Speiser. Festschrift zum 60 Geburtstag von Prof. Dr. Andreas Speiser (1945).
2) T. Nakayama and G. Azumaya: On absolutely uni-serial algebras. Jap. J. Math., 19, (1948).
3) C. Nesbitt: On the regular representations of algebras. Ann. of Math., 39 (1938).
4) C. Nesbitt and T. Nakayama: Note on symmetric algebras. Ann. of Math., 39 (1938).
5) C. Nesbitt and W.M. Scott: Some remarks on algebras over an algebraically closed field. Ann. of Math., 44 (1943).
6) M. Osima: On the Schur relations for the representations of a Frobenius algebra, forthcoming.
7) W.M. Scott: On matrix algebras over an algebraically closed field. Ann. of Math., 43 (1942).

[^0]:    4) Nesbitt [3], Scott [7]. Cf. also Nesbitt and Scott [5].
    5) See Brauer [1].
    6) Osima [6].
