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In this note we shall prove some simple theorems on the identifi-
cation of two topological groups with the same underlying abstract
group.

1. Some notations and definitions. In the following we mean
by the word "topology" a topology which satisfies Hausdorff’s
axioms.

We denote by R(T) a set R with topology T (in this note R
may be an abstract set or an abstract group or an abstract linear
space). For two sets R and R (without topologies) we denote by
RR their direct product, that is, the set of all pairs (x, x)
where x e R and x. e R. When R and R are both abstract groups
or both abstract linear spaces, we can consider R R as an abstract
group or as an abstract linear space in the well-known manner (in
the case of groups, we define (x, x) (y, y) by (xy, xy) where
x, y e R and x, y e R, and in the case of linear spaces, we define
(xl, x) + (yl, y) and (x, x2) by (x+y, x+y2) and (xl,
respectively where x, yl R1 x, y,. R and a is any real number).
When R(T) and R(T) are two topological spaces, we denote by
R(T) R(T) the so-called topological direct product of R(T) and
R(T). We denote the topology of the topological space R(T)
R,.(T,.) by T T,.. Evidently by the definitions R R(T T)----
R(T) R(T). For a subset S of a topological space R(T), we
denote by S {T} S with the topology induced by T. If R is endowed
with two topologies T and T*, and T is stronger (that is, with more
open sets) than T* or at least equivalent to T*, then we write T::> T*.
By .,/, we denote the diagonal of R R, that is, the set of the ele-
ments of RR which are of the form (a,a) where aeR. When
R is an abstract group or an abstract linear space, ,, is a subgroup
or a linear subspace of R R respectively.

In the following, we shall say that a topological space is semi-
compact, if it is locally bicompact and can be represented as a sum
of a number, countable at most, of bicompact sets.

2. We prove first a simple lemma.
Lemma 1. If R is endowed with three topologies T, T, T* and

T___ T*, T’_ T*, then zl is closed in R(T) R(T).
Proof. T T

__
T* T*, since T T* and T T*. On the

other hand, .,1 is closed in R R(T* T*) (-= R(T*) R(T*)), as



436 T. KASUGA [Vol. 29,

R(T*) is a Hausdorff space. Hence 1 is closed in R R(T T)
(= R(T) R(T)).

:. Theorem 1. Let G(T) and G(T) be both semi-compact
topological groups with the same underlying abstract group G. If we
can define a topology T* on G such that T__ T* and T__ T* (G(T*)
needs not be necessarily a topological group), then G(T) and G(T) are
one and the same topological group.

Proof. From the. assumption that G(T)and G(T) are both
semi-compact topological groups, we can easily prove that G(T)
G(T) is also a semi-compact topological group. On the other hand,
by Lemma 1, is closed in G(T) G(T) as T_T* and T_ T*.
Hence a{T T} (that is, .,/a with the topology induced by the
topology T T of G(T) G(T)) is a semi-compact topological
group.

The mapping (a, a)->a, where a e G, is continuous as a mapping
of .,/{T T} onto G(T) as well as, as a mapping of ./ {T T}
onto G(T) and at the same time it is an abstract group isomor-
phism of /a onto G. It is well-known that if an abstract group
homomorphism of a semi-compact topological group onto another
semi-compact topological group is continuous, then this mapping is
open). Since G(T), G(T) and .,/{T T,.} are semi-compact topol-
ogical groups, the mapping (a, a) a where a G, is an isomor-
phism of Aa {T T} onto G(T) and is at the same time an isomor-
phism of Za {T T} onto G(T,.). Hence the identity mapping a - a
where a e G, is an isomorphism of G(T) onto G(T). Thus Theorem
1 is proved.

4. From Theorem 1 we can easily deduce the two following
theorems.

Theorem 2. Let R(T) be a topological space and G be a group
of transformations ofR as an abstract set (we denote by g(p) the re-
sult of the transformation g(e G) as applied to p(e R)). If we can
define a topology T on (I such that G(T) is a semi-compact topologi-
cal group and the mapping A g- g(p) where g e G and p is a fixed
element of R, is continuous as a mapping of G(T) into R(T) for any
fixed element p of R, then such T is uniquely determined.

Proof. We can easily construct the weakest topology T* among
the topologies T** of G such that the mapping A g og(p) is con-
tinuous as a mapping of G(T**) into R(T) for any fixed element
p of R (G(T**) needs not be necessarily a topological group).

When p,..., p,, are elements of R and go is an element of G and
U,..., U,, are neighbourhoods in R(T) of go(p),..., go(p,,) respect-
ively, we denote by V(go: p,...,p,,: U,..., U,) the set of the
elements g of G such that g(p,) U i= 1,..., n.
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We can define the topology T* of G by taking V(go" p,..., p,"

U,..., U,,) for any finite number of elements p,..., p, of R and for
any neighbourhoods U,..., U,, in R(T) of go(p),..., go(p) respect-
ively as the neighbourhoods of any element go of G. Hausdorff’s
axioms can be easily verified for this system of neighbourhoods.
Then for any T which satisfies the conditions of Theorem 2, T T*.
Hence by Theorem 1, T is uniquely determined.

Theorem :. Let H be a subgroup of an abstract group G and
G(T) be a topologica group with the underlying abstract group G.
If we can define on H a topology T such that H(T) is a semi-compact
topological group and the identiy mapping" h h where he H, is
continuous as a mapping of H(T) into G(T), then T is uniquely
determined.

Proof. If we denote by T* the topology induced on H by the
topology T of G(T), then for any T which satisfies the conditions
of Theorem 3, TT*. Hence by Theorem 1, T is uniquely de-
termined.

!i. Theorem 4. Le L(N) and L(N) be two Banach spaces
with the norms N and N respectively, but with the same underlying
abstract linear space L. If the weak topologies of L(N) and L(N)
are equivalent, then L(N) and L(N) are isomorphic by the identity
mapping. (Roughly speaking, a Banach space is determined in its
topological structure by its algebraic structure and its weak topology.)

Proof. We denote by T and T the topologies on L induced by
the norms N and N. respectively and by W the common weak
topology of L(N) and L(N). By defining a suitable norm (not
uniquely determined) on L L, we can consider the linear space
L L as a Banach space whose topology is T T. We denote
this norm by h N and this Banach space by L L(N N.) or
by L(N) L(N).

By Lemma 1, . is a closed linear subspace of L(N) L(N)
as T>_ W and T. W. Hence we can consider ,,/,: as a Banach
space with the norm induced on ,/ by the norm N N of L(N)
L(N). We denote this Banach space by ,,/ {N N}.

The mapping (a, a)- a where a L, is continuous as a mapping
of /. {N N} onto L(N), as well as, as a mapping of .t {N
N} onto L(N) and at the same time, it is an abstract linear
isomorphism of ../ onto L. Moreover {N N}, L(N) and L(N)
are all Banach spaces. Hence by a well-known theorem of Banach),
the mapping (a, a) a where a e L, is an isomorphism of ./, {N
N} onto L(N) and is at the same time an isomorphism of ,,/ {N
N} onto L(N). Then the mapping a--> a where a L, is an isomor-
phism of L(N) onto L(N). Thus Theorem 4 is proved.



438 T. KASUGA [Vol. 29,

Notes

1) Cf. T. Tannaka, Isogunron (in Jap.), 36-37 (1949). Also cf. H. Freudenthal,
Einige SRtze iiber topologische Gruppen, Ann. Math., 37 (1936), where this proposition
is proved, under the assumption that both topological groups are separable.

2) Cf. Banach, Thdorie des opdrations lindaires, 41 (1932).


