74. Quasi-Conformal Extension of Meier's Theorem

By Shinji YAMASHITA

Mathematical Institute, Tôhoku University

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1970)

We shall show that the so-called Meier's topological analogue of Plessner's theorem ([5], Satz 5, cf. [2], p. 154) is true of quasi-conformal functions in U:|z|<1. A function w=f(z) defined in a plane domain G with its values in the w-sphere $\Omega:|w| \leq \infty$ is called quasiconformal (precisely, K-quasi-conformal) in G if f is of the composed form: $g \circ T(z)$, where $\zeta = T(z)$ is a K-quasi-conformal homeomorphism from G onto another plane domain G' and $w=g(\zeta)$ is meromorphic in G' (cf. [4], p. 250).

Let f(z) be a quasi-conformal function in U and let $e^{i\theta}$ be a point of $\Gamma:|z|=1$. Then the cluster set $C(f, e^{i\theta})$, an angular cluster set $C_d(f, e^{i\theta})$ and a chordal cluster set $C_{\rho(\varphi)}(f, e^{i\theta})$ are defined in the same manner as in [2] (pp. 1, 73 and 72), where Δ is the interior of a triangle in U with one vertex $e^{i\theta}$ (simply, "angle Δ at $e^{i\theta}$ ") and $\rho(\varphi)$ is a chord of Γ passing through $e^{i\theta}$ and making a directed angle φ , $|\varphi| < \pi/2$, with the radius to $e^{i\theta}$. A point $e^{i\theta} \in \Gamma$ is a Plessner point of f if $C_d(f, e^{i\theta}) = \Omega$ for any angle Δ at $e^{i\theta}$. A point $e^{i\theta} \in \Gamma$ is a Meier point of f if $C(f, e^{i\theta}) \neq \Omega$ and $C_{\rho(\varphi)}(f, e^{i\theta}) = C(f, e^{i\theta})$ for all φ , $|\varphi| < \pi/2$. We denote by I(f) (M(f), resp.) the set of all Plessner points (Meier points, resp.) of f.

We first prove a topological analogue of Fatou's theorem (cf. [5], Satz 6, [2], p. 154).

Theorem 1. Let f be a bounded quasi-conformal function in U. Then $\Gamma \setminus M(f)$ is of first Baire category on Γ .

Proof. We shall use the Schwarz lemma for quasi-conformal functions (cf. [3]) in the following form: Let h(z) be a K-quasi-conformal function in the disk $\delta(z_o, q): |z-z_o| < q$. If |h(z)| < M, M > 0 being a constant, in $\delta(z_o, q)$, then

(1)
$$|h(z)-h(z_o)| \leq 8Mq^{-1/K} |z-z_o|^{1/K}, \quad z \in \delta(z_o, q).$$

We let, for the proof, $h(z) = g \circ T(z)$, where T is a K-quasi-conformal self-homeomorphism of $\delta(z_o, q)$ with $z_o = T(z_o)$, which we may suppose, and g is holomorphic in $\delta(z_o, q)$. Then, Theorem 5, (9) of Mori [6] reads

$$|T(z) - T(z_o)| \leq 4q^{1-(1/K)} |z - z_o|^{1/K}.$$

Combined with the Schwarz lemma for the bounded g, this gives (1).

S. YAMASHITA

Let $e^{i\theta} \in \Gamma \setminus M(f)$. Then we have a chord $\rho(\varphi)$ at $e^{i\theta}$ with $C_{\rho(\varphi)}(f, e^{i\theta}) \neq C(f, e^{i\theta})$, where we may suppose $0 \leq \varphi < \pi/2$. Let $P \in C(f, e^{i\theta}) \setminus C_{\rho(\varphi)}(f, e^{i\theta})$ and let $\overline{\delta}(P, 2\beta)$ be a closed disk with the centre $P \neq \infty$ and the radius $2\beta < (1/2)$ dis $\{C_{\rho(\varphi)}(f, e^{i\theta}), P\}$. Then we may find a segment $\rho_1(\varphi) \subset \rho(\varphi)$, one end-point of which is $e^{i\theta}$, such that

(2) $\overline{f(\rho_1(\varphi))} \cap \overline{\delta}(P, 2\beta) = \emptyset$ (empty) and that $\gamma(\xi) < 1 - |\xi|$ for $\xi \in \rho_1(\varphi)$, where $\gamma(\xi) = |\xi - e^{i\theta}| \sin(\pi/4 - \varphi/2)$, the latter being a consequence of: $\gamma(\xi) \to 0$ as $\rho(\varphi) \ni \xi \to e^{i\theta}$. By boundedness of f, we have |f(z)| < m/8, m > 0 being a constant, $z \in U$. We set $\gamma_o = \min\{(\beta/m)^{\kappa}, 1\}$ and we let $A_{\xi}, \ \xi \in \rho_1(\varphi)$, be the open disk: $|z - \xi| < \gamma_o \gamma(\xi)$. It follows from (1) with $h(z) = f(z), \ z_o = \xi, \ q = \gamma(\xi),$ M = m/8, that

$$|f(z) - f(\xi)| \leq \beta$$

for any $\xi \in \rho_1(\varphi)$ and $z \in A_{\xi}$ since A_{ξ} is contained in $|z - \xi| < \gamma(\xi)$. It follows from (2) and (3) that

(4) $\overline{f(A_{\xi})} \cap \overline{\delta}(P, \beta/2) = \emptyset$ for $\xi \in \rho_1(\varphi)$. Now, as $\rho_1(\varphi) \ni \overline{\xi} \to e^{i\theta}$, the disks A_{ξ} sweep an angle \varDelta at $e^{i\theta}$ bisected by $\rho(\varphi)$, so that by (4) we have

 $\overline{f(\Delta)} \cap \overline{\delta}(P, \beta/2) = \emptyset$

and hence

(3)

$$C_{A}(f, e^{i\theta}) \neq C(f, e^{i\theta}).$$

Our theorem follows from Collingwood's maximality theorem ([1], Theorem 4, cf. [2], p. 80). Q.E.D.

Let γ be an arbitrary simple arc in U terminating at $e^{i\theta}$ and tangent at $e^{i\theta}$ to a chord $\rho(\varphi)$ at $e^{i\theta}$. Then the curvilinear cluster set $C_{\gamma}(f, e^{i\theta})$ ([2], p. 72) coincides with $C_{\rho(\varphi)}(f, e^{i\theta})$ if f is bounded and quasi-conformal in U. For the proof, we use the same method as in the proof of Theorem 1.

Following the familiar lines ([5], cf. [2], p. 155) we have

Theorem 2. Let f(z) be a quasi-conformal function in U. Then $\Gamma \setminus \{M(f) \cup I(f)\}$ is of first Baire category on Γ .

References

- E. F. Collingwood: Cluster set theorems for arbitrary functions with applications to function theory. Ann. Acad. Sci. Fenn. Ser. A. I. Math. No. 336/8, 1-15 (1963).
- [2] E. F. Collingwood and A. J. Lohwater: The Theory of Cluster Sets. Cambridge Univ. Press, Cambridge (1966).
- [3] J. Hersch and A. Pfluger: Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques. C.R. Acad. Sci. Paris, 234, 43-45 (1952).
- [4] O. Lehto and K. I. Virtanen: Quasikonforme Abbildungen. Springer-Verlag, Berlin-Göttingen-Heidelberg (1965).

- [5] K. Meier: Über die Randwerte der meromorphen Funktionen. Math. Ann., 142, 328-344 (1961).
- [6] A. Mori: On quasi-conformality and pseudo-analyticity. Trans. Amer. Math. Soc., 84, 56-77 (1957).