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74. Quasi.Conformal Extension of Meier’s Theorem
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Mathematical Institute, TShoku University

(Comm. by Kinjir5 KuNu(I, M. Z. A., March 12, 1970)

We shall show that the so-called Meter’s topological analogue of
Plessner’s theorem ([5], Satz 5, cf. [2], p. 154) is true of quasi-con-
formal functions in U:lzll. A function w-f(z) defined in a plane
domain G with its values in the w-sphere 9:lwl<__c is called quasi-
conformal (precisely, K-quasi-conformal) in G if f is of the composed
form: goT(z), where ---T(z) is a K-quasi-conformal homeomorphism
from G onto another plane domain G’ and w-g() is meromorphic in
G’ (cf. [4], p. 250).

Let f(z) be a quasi-conformal function in U and let e be a point
of F:lzl=l. Then the cluster set C(f, e), an angular cluster set
C(f, e) and a chordal cluster set C,()(f, e) are defined in the same
manner as in [2] (pp. 1, 73 and 72), where is the interior of a triangle

in U with one vertex e (simply, "angle /at e’’) and p() is a chord
of F passing through e and making a directed angle
with the radius to e. A point eeF is a Plessner point of f if
C(f, e)=/2 for any angle / at e. A point e e F is a Meier point
of f if C(f, ei)=/=f2 and Cp)(f, eo)-C(f, e) for all , 117/2. We
denote by I(f) (M(]), resp.) the set of all Plessner points (Meier
points, resp.) of f.

We first prove a topological analogue of Fatou’s theorem (cf. [5],
Satz 6, [2], p. 154).

Theorem 1. Let f be a bounded quasi-conformal function in U.
Then F\M(f) is of first Baire category on 1".

Proof. We shall use the Schwarz lemma for quasi-conformal
functions (cf. [3]) in the following form: Let h(z) be a K-quasi-con-
formal function in the disk (zo, q):lz--zolq. If Ih(z)lM,MO
being a constant, in (zo, q), then
( 1 h(z) h(zo) l<= 8Mq-1/K Z Zo 11/, Z e (zo, q).

We let, for the proof, h(z)=goT(z), where T is a K-quasi-con-
formal self-homeomorphism of (zo, q) with zo=T(zo), which we may
suppose, and g is holomorphic in (Zo, q). Then, Theorem 5, (9) of
Mort [6] reads

IT(z)- T(zo) <-_ 4q-/: Iz- zol/K.
Combined with the Schwarz lemma or the bounded g, this gives (1).
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Let eeF\M(f). Then we have a chord p(?) at e with
C,()(f,e)q=C(f,e), where we may suppose 0(fzr/2. Let P
e C(f, e)\C,()(f, e) and let (P, 2) be a closed disk with the centre
P:/: o and the radius 2fl (1/2) dis {C,()(f, e), P}. Then we may find
a segment Pl()P(), one end-point of which is e, such that
( 2 ) f(Pl()) (P, 2ft)--t (empty)
and that ’()<l--Il for e p(f), where ’()--I--e sin (/4--/2),
the latter being a consequence of" y()- 0 as p() $--*e. By bound-
edness of f, we have [f(z) m/8, m>0 being a constant, z e U. We
set ’o-min((fl/m),l} and we let A, $ e p(p), be the open disk"

Iz--lo’($). It follows from (1) with h(z)-f(z), zo=$, q-’(),
M-m/8, that
( 3 ) [f(z)--f()] t
for any e p((f)and z e A since A is contained in [z-[(). It
ollows from (2) and (3) that
( 4 ) f(A) (P, fl/2)=
or $ e p((?). Now, as p() $ e, the disks A sweep an angle A at
e bisected by p(), so that by (4) we have

f(A) f (P, / 2) l
and hence

C(f ei) =/= C(f ei).
Our theorem follows from Collingwood’s maximality theorem ([1],

Theorem 4, c. [2], p. 80). Q.E.D.
Let , be an arbitrary simple arc in U terminating at e and

tangent at e to a chord p() at e. Then the curvilinear cluster set
Cr(f, e) ([2], p. 72) coincides with C,()(f, e) if f is bounded and
quasi-conformal in U. For the proof, we use the same method as in
the proof of Theorem 1.

Following the familiar lines ([5], cf. [2], p. 155) we have
Theorem 2. Let f(z) be a quasi-conformal function in U. Then

F\{M(f) [J I(f)} is of first Baire category on F.
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