35. On Symbolic Representation

By Kiyoshi Aoki
Mathematical Institute, Tôhoku University, Sendai
(Comm. by Z. Suetuna, m.J.A., March 12, 1954)

M. Morse and G. A. Hedlund have shown the method of symbolic dynamics and proved the interesting theorems in their papers [1], [2]. Those theorems seem as if they are independent of classical dynamics but they are indeed a new representation of classical interesting theorems

In this paper we shall prove the theorems of symbolic representation. These theorems are applicable to transitivity problem.

1. We consider a closed two-dimensional Riemannian manifold \sum which is of genus $p \geqq 1$. The adding assumption is that no geodesic on \sum has on it two mutually conjugate points.

When $p>1$ a convex domain S_{0} in the unit circle regarded as the non-Euclidean plane Φ is bounded by a sequence

$$
B_{1}^{-1}, A_{1}^{-1}, B_{1}, A_{1}, B_{2}^{-1}, A_{2}^{-1}, B_{2}, A_{2}, \ldots, B_{p}^{-1}, A_{p}^{-1}, B_{p}, A_{p}
$$

of congruent segments of H-straight (H means hyperbolic) lines such that each pair of the successive H-lines forms an angle equal to $\frac{\pi}{2 p}$. If we identify congruent points of conjugate sides of S_{0}, we get a closed orientable surface T of genus p with constant negative curvature.

Let $\tilde{B}_{1}, \tilde{A}_{1}, \tilde{B}_{2}, \tilde{A}_{2}, \ldots, \tilde{B}_{p}, \tilde{A}_{p}$ be a set of geodesics which starts from and comes back to a point P of \sum and every geodesic of the set be. homotopic to a curve of canonical section of Σ. Then we can select those geodesics so as to be independent each other if we choose P suitably.

We map \sum topologically on T and $\tilde{A}_{i}, \tilde{B}_{i}$ on A_{i}, B_{i} respectively and denote this map f.

When $p=1$ a convex domain S_{0} in Euclidean plane Φ is bounded by a sequence

$$
B_{1}^{-1}, A_{1}^{-1}, B_{1}, A_{1}
$$

of congruent segments of E-straight lines (E means Euclidean) such that each pair of successive H-lines forms an angle equal to $\frac{\pi}{2}$ If we identify congruent points of conjugate sides of S_{0}, we get a closed orientable surface T of genus 1 with vanishing curvature.

Let $\tilde{B_{1}}, \tilde{A_{1}}$ be geodesics which start from and come back to a
point P of Σ and each geodesic be homotopic to a curve of a canonical section of \sum Then we can select those geodesics so as to be independent each other if we choose P suitably We map Σ topologically on T and $\tilde{A}_{1}, \tilde{B}_{1}$ on A_{1}, B_{1} respectively and denote this $\operatorname{map} f$.

In general we consider the H-straight segments which pass from an interior point of S_{0} to an interior point of $B_{i}^{-1}, A_{i}^{-1}, B_{i}, A_{i}(1=1,2$, $3, \ldots, p$) and we denote those $a_{i}, b_{i}^{-1}, a_{i}^{-1}, b_{i}$ respectively. Then f^{-1} $\left(a_{i}\right), f^{-1}\left(b_{i}^{-1}\right), f^{-1}\left(a_{i}^{-1}\right), f^{-1}\left(b_{i}\right)$ will be denoted as $\tilde{a}_{i}, \tilde{b}_{i}^{-1}, \tilde{a}_{i}^{-1}, \tilde{b}_{i}$ respectively.

We prepare some definitions.
Definition 1.1. We shall call the curves on T which are images of geodesics on \sum as geodesics on T.

Definition 1.2. A geodesic segment h will be said to be of class A if h on \sum is at least as short as any other rectifiable curve joining h 's end points and capable of being continuously deformed on \sum into h, without moving its end points. The image of geodesic which is of class A on \sum by f is called as geodesic of class A.

An unending geodesic (on \sum or T) will be said to be of class A if each of its finite segments is of class A.

Definition 1.3. Two unending curves on Φ will be said to be of the same type if there exists positive constant C such that every point of either curve lies in H-distance less than C from some point of the other.

Two unending curves on \sum will be said to be of the same type if there exists at least a pair of the same types in those images by f.

Definition 1.4. We shall say that \sum satisfies the hypothesis of unicity if there is only one geodesic of class A whose image on S is of the type of each H-straight line when $p>1$ or E-straight line when $p=1$.

Definition 1.5. Geodesic on \sum will be said to be regular relative to P when it does not pass a common point P of $\tilde{B_{i}}$ and $\tilde{A_{i}}$. Geodesic on \sum which contains \tilde{A}_{i} or \tilde{B}_{i} for some i will be called to be special geodesic relative to P. The image of regular, special geodesic relative to P by f will be called also regular, special geodesic.
2. Let $\theta_{1}, \theta_{2}, \ldots, \theta_{4 p}$ be the angles made by the successive two of $\tilde{B}_{1}^{-1}, \tilde{A}_{1}^{-1}, \tilde{B}_{1}, \tilde{A}_{1}, \ldots, \tilde{B}_{p}^{-1}, \tilde{A}_{p}^{-1}, \tilde{B}_{p}, \tilde{A}_{p}, \tilde{B}_{1}^{-1}$, respectively. These angles arrange around P on \sum in order of $\theta_{3}, \theta_{2}, \theta_{1}, \theta_{4}, \theta_{7}, \theta_{6}, \theta_{5}, \theta_{8}$, $\ldots, \theta_{4 p-1}, \theta_{4 p-2}, \theta_{4 p-3}, \theta_{4 p}, \theta_{3}, \theta_{2}, \ldots$ and their sums of the successive $4 p$ angles are 2π. We assume that the sum from the i-th angle
to the $\left(i+r_{i}-3\right)$-th angle is not greater than π and the sum from the i-th angle to the $\left(i+r_{i}-2\right)$-th angle is greater than $\pi . \quad r_{t}$ is constant depending upon P and i only.

Definition 2.1. A symbolic sequence (cf. Morse-Hedlund [1], [2]) will be called regular when it satisfies the following conditions:

1) No element (generator) immediately follows its inverse.
2) Subblock of length r_{i} or greater than r_{i} beginning from i-th symbol of

$$
a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \ldots a_{p} b_{p} a_{p}^{-1} b_{p}^{-1} a_{1} b_{1} \ldots
$$

does not exist.
The proof of the following theorem depends on the proof of Morse's theorem. (Cf. Morse [1].)

Theorem 1. If there be given any regular geodesic relative to P on \sum, there exists one, and only one unending regular sequence whose generating symbols are $\tilde{a}_{i}, \tilde{b}_{i}, \tilde{a}_{i}^{-1}, \tilde{b}_{i}^{-1}$.

Proof. Let g be a regular geodesic relative to P on Σ. Then $f(g)$ is regular on Φ, and $f(g)$ does not pass $f(P)$. Therefore $f(g)$ crosses the interior point of sides of S_{0}. As Φ is a universal covering space of $S_{0}, f(g)$ crosses the interior point of the sides which are images of the sides of S_{0} by the transformation of G, where G is Fuchsian group for $p>1$, and analogous group for $p=1$. (Cf. Ford [1].)

Hence $f(g)$ is corresponded by an unending symbolic sequence whose generators are $b_{i}, a_{i}, b_{i}^{-1}, a_{i}^{-1}$. So g is corresponded by an analogous sequence whose generators are $\tilde{b}_{i}, \tilde{a}_{i}, \tilde{b}_{l}^{-1}, \tilde{a}_{i}^{-1}$. This correspondence is induced by map f.

As \sum satisfies the condition that no geodesic on Σ has on it two mutually conjugate points, g is of class A. (Cf. Miorse-Hedlund [3].) Then $f(g)$ is of class A and it does not happen to enter into the image of S_{0} from one side and immediately goes out from the same one. As f is topological, g satisfies the similar condition. Hence a symbol and its successor are not inverse in symbolic sequence corresponding to g. As g is of class A, any segment $f(g)$ lies on convex domain of Φ, where convex is used by the method of geodesic of Definition 1.1. Therefore there is not a subblock from the i-th symbol to the ($i+r_{i}-1$)-th symbol of

$$
\tilde{a}_{1} \tilde{b}_{1} \tilde{a}_{1}^{-1} \tilde{b}_{1}^{-1} \ldots \tilde{a}_{p} \tilde{b}_{p} \tilde{a}_{p}^{-1} \tilde{b}_{p}^{-1} \tilde{a}_{1} \tilde{b}_{1} \ldots,
$$

because of the assumption of the interior angles of $f^{-1}\left(S_{0}\right)$. Then the second condition of the regular sequence is satisfied.

Theorem 2. If there be given any unending regular sequence whose generating symbols are $\tilde{a}_{i}, \tilde{b}_{i}, \tilde{a}_{i}^{-1}, \tilde{b}_{i}^{-1}$, there exists at least
one geodesic which corresponds to the given regular sequence.
Proof. An unending regular sequence

$$
\ldots h_{-2} h_{-1} h_{0} h_{1} h_{2} \ldots
$$

having the generating symbols $\tilde{a}_{i}, \tilde{b}_{i}, \tilde{a}_{i}^{-1}, \tilde{b}_{i}^{-1}$, determines an unending linear set L of the image of S_{0}. As the first condition of the regular sequence is satisfied, the image of S_{0} is not used twice. If we take care of the second condition of the regular sequence and the conditions of interior angles of $f^{-1}\left(S_{0}\right), L$ determines the convex domain (by the method of geodesic of Definition 1.1). When L is represented by

$$
\begin{equation*}
\ldots S_{-2} S_{-1} S_{0} S_{1} S_{2} \ldots \tag{1}
\end{equation*}
$$

we denote g_{n} the geodesic segment which passes from an interior point of S_{-n} to an interior point of S_{n} lying on (1).

It is evident that there is such a geodesic segment. We denote by e_{n} a line element which lies on S_{0} and g_{n}. The set of e_{n} has a limit element e. I will show that geodesic g^{*} determined by e has a point on each S_{i} of (1). Let r be any positive integer. For an integer $n>r$ the portion of g_{n} in

$$
\begin{equation*}
S_{-r} S_{-r+1} \ldots S_{-2} S_{-1} S_{0} S_{1} S_{2} \ldots S_{r-1} S_{r} \tag{2}
\end{equation*}
$$

is less in length than some fixed quantity independent of n. A finite segment of a geodesic varies continuously with its initial element. It follows that g^{*} possesses a finite segment g_{r}^{*} which has a point in each S_{i} of (2) and is wholly contained in (2). From the fact that g_{r}^{*} has a point in each S_{i} in (2), we may conclude that g^{*} has a point in each S_{i} in (1). For r sufficiently large, any given segment of g^{*} that begins with a point of S_{0}, is included in one of the two portions into which g_{r}^{*} is divided by those points. Thus every point of g^{*} lies on some segment g_{r}^{*}. Every point of g_{r}^{*} and hence every point of g^{*} lies in the given linear set. g^{*} is not special and does not pass $f(P)$. Then g^{*} is a regular geodesic Now I assume that a geodesic on Σ satisfies the condition of uniform instability. (Cf. Morse [2].) Then we know the following Morse's theorem.

Theorem 3. If a geodesic on Σ satisfies the condition of uniform instability, it satisfies the hypothesis of unicity. When we consider theorems 1 and 2 , we take care of the assumption and the conclusion of theorem 3. Then we can prove the following theorem easily, whose genus is $p>1$.

Theorem 4. If a geodesic on Σ satisfies the condition of uniform instability, there is one-to-one correspondence between the set of all regular geodesics relative to some fixed point P on Σ
and the set of all regular unending sequences whose generating symbols are $\tilde{a}_{i}, \tilde{b}_{i}, \tilde{a}_{i}^{-1}, \tilde{b}_{i}^{-1}$.

References

1) L. R. Ford, [1] Automorphic function. New York (1929).
2) M. Morse and G. A. Hedlund, [1] Symbolic dynamics, I. Amer. Journ. Math., 60, 815-866 (1938).
3) M. Morse and G. A. Hedlund, [2] Symbolic dynamics, II. Amer. Journ. Math., 62, 1-42 (1940).
4) M. Morse and G. A. Hedlund, [3] Manifold without conjugate points. Trans. Amer. Math. Soc., 51, 362-385 (1942).
5) M. Morse, [1] A one-to-one representation of geodesics on a surface of negative curvature. Amer. Journ. Math., 43, 33-51 (1921).
6) M. Morse, [2] Instability and transitivity. J. Math., 14, 49-71 (1935).
