75. Ergodic Decomposition of Stationary Linear Functional*)

By Hisaharu UMEGAKI

Department of Mathematics, Tokyo Institute of Technology (Comm. by K. KUNUGI, M.J.A., May 13, 1954)

In this note, we shall prove ergodic decomposition of stationary semi-trace of a separable D^* -algebra with a motion, applying the reduction theory of von Neumann [2]¹⁾ and a decomposition of a two-sided representation [3]. The theorem in this paper contains the ergodic decompositions of stationary trace on separable C^* -algebra with a motion and the ergodic decomposition of invariant regular measure on separable locally compact Hausdorff space with a group of homeomorphisms. (Cf. Th. 4 and Th. 7 of [3].)

Let \mathfrak{A} be a D^* -algebra (:normed *-algebra over the complex number field) with an approximate identity $\{e_a\}$ and with a motion G where G is meant by any group of isometric *automorphisms on \mathfrak{A} . (Cf. [3].) Let τ be a G-stationary semi-trace of \mathfrak{A} , i.e. τ is a linear functional on \mathfrak{A}^2 (=self-adjoint (s.a.) subalgebra generated by $\{xy; x, y \in \mathfrak{A}\}$ such that $\tau(x^*x) \geq 0, \tau(xy) = \tau(xy) = \overline{\tau(x^*y^*)}, \tau((xy)^*xy)$ $\leq ||x||^2 \tau(y^*y), \ \tau((e_a x)^* e_a x) \xrightarrow{a} \tau(x^*x) \text{ and } \tau(x^* y^*) = \tau(xy) \text{ for all } x, y \in \mathfrak{A}$ and $s \in G$. Putting $\mathfrak{N} = \{x; \tau(x^*x) = 0, x \in \mathfrak{N}\}, \mathfrak{N}$ is a two-sided ideal in \mathfrak{A} . Let \mathfrak{A}^{θ} be the quotient algebra $\mathfrak{A}/\mathfrak{A}$ and x^{θ} the class $(\mathfrak{s}\mathfrak{A}^{\theta})$ containing x which is an incomplete Hilbert space with inner product $(x^{\theta}, y^{\theta}) = \tau(y^*x)$. Let \mathfrak{H} be the completion of \mathfrak{A}^{θ} with respect to the norm $||y^{\theta}|| (=\tau(y^*y)^{1/2})$. Putting $x^a y^{\theta} = (xy)^{\theta}$, $x^b y^{\theta} = (yx)^{\theta}$, $jy^{\theta} = y^{*\theta}$ and $U_{s}y^{\theta} = y^{s\theta}$ for all $x, y \in \mathfrak{A}$ and $s \in G$, $\{x^{a}, x^{b}, j, \mathfrak{H}\}$ defines a two-sided representation of \mathfrak{A} . (Cf. [3].) Moreover $\{U_s, \mathfrak{H}\}$ defines a dual unitary representation of G. Indeed, for any $x, y \in \mathfrak{A}(U_s y^0, U_s y^0)$ $=(x^{s_{\theta}}, y^{s_{\theta}})=\tau(y^{s_{x}}x^{s_{s}})=(y^{\theta}, x^{\theta})$ and $U_{st}y^{\theta}=y^{s_{t}\theta}=U_{t}y^{s_{\theta}}=U_{t}U_{s}y^{\theta}$. Hence U_{s} has uniquely unitary extension on \mathfrak{H} which satisfies the required relations. These representations are uniquely determined by the given τ within unitary equivalence. (Cf. [3].)

For any collection F of bounded operators and two W^* -algebras W_1 , W_2 on a Hilbert space, we denote F' the collection of all bounded operators commuting for all $A \in F$ and $W_1 \cup W_2$ the W^* -algebra generated by W_1 and W_2 .

Let W^a , W^b and W_G be W^* -algebras generated by $\{x^a; x \in \mathfrak{A}\}$, $\{x^b; x \in \mathfrak{A}\}$ and $\{U_s; s \in G\}$ respectively, then $W^a = W^{b'}$ and $jAj = A^*$ for all $A \in W^a \cap W^b$. (Cf. Th. 2 of [3].)

^{*)} This paper is a continuation of the previous paper [3].

¹⁾ Numbers in brackets refer to the references at the end of this paper.

No. 5] Ergodic Decomposition of Stationary Linear Functional

A G-stationary semi-trace τ is called *G-ergodic*, if τ is not positively linear combination of any other linearly independent *G*stationary semi-traces of \mathfrak{A} . Then τ is *G*-ergodic if and only if $\{x^a, x^b, U_s, j, \mathfrak{H}\}$ is irreducible, i.e. $W^a \cap W^b \cap W'_G = \{\lambda I\}$. (Cf. Th. 5 of [3].)

Let \mathfrak{A} be separable with the motion G, then we have

Lemma 1. G contains an enumerable subset $\{s_n\}$ such that for any $x \in \mathfrak{A}$ and $t \in G$ there exists $\{t_n\} \subset \{s_n\}$ satisfying

$$||x^{t_n}-x^t|| \to 0 \ (n \to \infty).$$

The proof of this lemma follows from the similar way in the proof of Th. 5 of [3].

In the following, we assume that \mathfrak{A} is a separable D^* -algebra with G and has a G-stationary semi-trace τ , and moreover \mathfrak{A} satisfies that there is an enumerable subset \mathfrak{A}_c in \mathfrak{A} with the property that: for any $x \in \mathfrak{A}$ there exists $y_x \in \mathfrak{A}_c$ (dependently on x) such that (1) $x = xy_x$.

THEOREM. For the D*-algebra \mathfrak{A} , there exists a system of Gergodic semi-traces π_{λ} such that

(2)
$$\tau(x) = \int \pi_{\lambda}(x) d\sigma(\lambda)$$
 for all $x \in \mathfrak{A}$

where λ runs over the whole real line R and the weight function $\sigma(\lambda)$ is an N-function in the sense of von Neumann. (Cf. [2].)

First we shall prove the following lemma:

Lemma 2. (i) Any semi-trace ω of \mathfrak{A} satisfies that for all x and $z \in \mathfrak{A}$

$$|\omega(xz)| \leq ||x|| \omega(z^*z)^{1/2} \omega(y_z^*y_z)^{1/2}.$$

(ii) If $\omega(x^{*s_n}x^{s_n}) = \omega(x^*x)$ for all $x \in \mathfrak{A}$ and $n=1, 2, \ldots$, then ω is G-stationary.

Proof. (i): $|\omega(xz)| = |\omega(xzy_z)| \leq \omega((xz)^* xz)^{1/2} \omega(y_z^* y_z)^{1/2} \leq ||x||$ $\omega(z^*z)^{1/2}\omega(y_z^* y_z)^{1/2}$. (ii): For $x \in \mathfrak{A}$ and $t \in G$, taking $\{t_n\} \subset \{s_n\}$ such that $||x^{t_n} - x^t|| \to 0 \ (n \to \infty)$, $|\omega(x^{*t}x^t) - \omega(x^{*t_n}x^t)| = |\omega((x^{*t_n} - x^{*t})x^t)| \leq ||x^{t_n} - x^t|| \cdot M \to 0 \ (n \to \infty)$ and

$$\begin{aligned} | \omega(x^{*t_n}x^t) - \omega(x^{*t_n}x^{t_n}) | &= | \omega(x^{*t_n}(x^t - x^{t_n})) | \\ &\leq || x^t - x^{t_n} || \cdot \omega(x^{*t_n}x^{t_n})^{1/2} \omega(y_x^{*t_n}y_x^{t_n})^{1/2} \\ &= || x^t - x^{t_n} || \cdot \omega(x^*x)^{1/2} \cdot \omega(y_x^*y_x)^{1/2} \to 0 \ (n \to \infty). \end{aligned}$$

Since $\omega(x^{*tn}x^{tn}) = \omega(x^*x)$, $\omega(x^{*t}x^t) = \omega(x^*x)$. As any $x \in \mathfrak{A} = xy_x = [(x+y_x)^*(x+y_x) + \cdots]/4$, $\omega(x^t) = \omega(x)$ for all $x \in \mathfrak{A}$ and $t \in G$. *Proof of* THEOREM.² Let G_0 be subgroup of G generated by

359

²⁾ Since $U_s x U_{s-1} y^0 = x^{sa} y^0$ for all $x, y \in \mathfrak{A}$, putting $x^{as} = x^{sa}$, $x^a \to x^{as}$ is uniquely extended to a *automorphism on the C*-algebra \mathfrak{R} generated by $A^a = \{x^a; x \in \mathfrak{A}\}$ such that $A \in \mathfrak{R} \to A^s (= U_s A U_{s^{-1}}) \in \mathfrak{R}$, and G induces a motion on \mathfrak{R} . Since \mathfrak{R} is separable and $||A^s|| = ||U_s A U_{s^{-1}}|| = ||A||$ for all $A \in \mathfrak{R}$ and $s \in G$, Lem. 1 for (\mathfrak{R}, G) also holds. Considering the stationary semi-trace π_{λ} on \mathfrak{A}^a with respect to the operator norm (in the place of \mathfrak{A}), the proof of this theorem may be possible without the assumption $||x^s|| = ||x|| (x \in \mathfrak{A}, s \in G)$.

 $\{s_n\}$ and $\{x_n\}$ dense subset of \mathfrak{A} . Let \mathfrak{A}_0 be countable s.a. subring in \mathfrak{A} generated by $\{x_n^*, y^t; s, t \in G_0, y \in \mathfrak{A}_c, n = 1, 2, \ldots\}$. Let \mathfrak{A}_1 be a C^* -algebra generated by $\{x^a, y^b, U_s; x, y \in \mathfrak{A}, s \in G_0\}$ which is obviously separable (in the uniform topology) and contains I. Putting $M = W^a \cap W^b \cap W'_{G_0}$, M is a commutative W^* -algebra. Since \mathfrak{H} is separable (cf. Lem. 6 of [3]), there exists a direct decomposition in the sense of von Neumann: $\mathfrak{H} = \int \mathfrak{H}_\lambda d\sigma(\lambda)$ and $A \sim \int A_\lambda (A \in M')$ with respect to M, where the N-function $\sigma(\lambda)$ is determined by M. Since $\mathfrak{A}'_1 = (W^a \cup W^b \cup W_{G_0})' = W^b \cap W^a \cap W'_{G_0}$, there exists a $\sigma(\lambda)$ -null set $N_1(\subset R)$ such that $\{A_\lambda; A \in \mathfrak{A}_1\}' = \{aI_\lambda\}$ for $\lambda \in N_1$, and since x^a, x^b , $U_s \in M'$ ($s \in G_0$) they are decomposable :

$$x^{a} \sim \int x^{a(\lambda)}, x^{b} \sim \int x^{b(\lambda)} \text{ and } U_{s} \sim \int U_{s}(\lambda).$$

Putting $y^{\theta} = \int y^{\theta(\lambda)}$, by Lem. 4 of [3] $\{x^{a(\lambda)}, x^{b(\lambda)}, j_{\lambda}, \mathfrak{H}_{\lambda}\}$ is a two-sided representation of \mathfrak{A} and $U_{s}(\lambda)(s \in G_{0})$ are unitary on \mathfrak{H}_{λ} such that $U_{st}(\lambda) = U_{t}(\lambda)U_{s}(\lambda), \quad U_{s^{-1}}(\lambda) = U_{s}(\lambda)^{-1}, \quad U_{s}(\lambda) + U_{t}(\lambda) = (U_{s} + U_{t})(\lambda)$ and $U_{s}(\lambda)y^{\theta(\lambda)} = y^{s\theta(\lambda)}$ for all $s \in G_{0}$ and all $y \in \mathfrak{A}_{0}$ excepting a $\sigma(\lambda)$ -null set N_{2} . Then $\{x^{a(\lambda)}, y^{b(\lambda)}, U_{s}(\lambda); x, y \in \mathfrak{A}_{0}, s \in G_{0}\}$ are irreducible for $\lambda \in N_{1} \smile N_{2}$. Since \mathfrak{A}_{0} is countable, we can find a $\sigma(\lambda)$ -null set N_{3} such that

 $(x+y)^{\theta(\lambda)} = x^{\theta(\lambda)} + x^{\theta(\lambda)}, (xy)^{\theta(\lambda)} = x^{\alpha(\lambda)}y^{\theta(\lambda)} = y^{b(\lambda)}x^{\theta(\lambda)} \text{ and } j_{\lambda}y^{\theta(\lambda)} = y^{*\theta(\lambda)}$ for all $x, y \in \mathfrak{A}_{0}$ and $\lambda \in N_{3}$.

Let $W^{a(\lambda)}$, $W^{b(\lambda)}$ and $W_G(\lambda)$ be W^* -algebras generated by $\{x^{a(\lambda)}; x \in \mathfrak{A}_0\}$, $\{x^{b(\lambda)}; x \in \mathfrak{A}_0\}$ and $\{U_s(\lambda); s \in G_0\}$ $(\lambda \bar{\epsilon} N = \bigcup_i N_i)$ respectively. Because the closed linear extension \mathfrak{M} (in \mathfrak{H}_{λ} for $\lambda \bar{\epsilon} N$) of $\{(xy)^{\theta(\lambda)}; x, y \in \mathfrak{A}_0\}$ is invariant under $x^{a(\lambda)}, y^{b(\lambda)}(x, y \in \mathfrak{A}_0), j_{\lambda}$ and $U_s(\lambda)(s \in G_0), \mathfrak{M} = \mathfrak{H}_{\lambda}$, and $W^{a(\lambda)}$ and $W^{b(\lambda)}$ are weak closures of $\{x^{a(\lambda)}; x \in \mathfrak{A}\}$ and $\{x^{b(\lambda)}; x \in \mathfrak{A}\}$ respectively. (Cf. Lem. 1 of [3].)

Now we shall prove that \mathfrak{H}_{λ} (for arbitrary, but fixed $\lambda \overline{\varepsilon} N$) is *H*-system. (Cf. [1].)

i) A vector $v \in \mathfrak{H}_{\lambda}$ is called bounded, if $||x^{a(\lambda)}v|| \leq M_{v}||x^{9(\lambda)}||$ for all $x \in \mathfrak{A}_{0}$ and a constant $M_{v} > 0$. Denote \mathfrak{B}_{λ} the collection of all such $v \in \mathfrak{H}_{\lambda}$. It is evident that $\{x^{\theta(\lambda)}; x \in \mathfrak{A}_{0}\} \subset \mathfrak{B}_{\lambda}$. For any $v \in \mathfrak{B}_{\lambda}$, putting $v_{\lambda}^{b'} x^{\theta(\lambda)} = x^{a(\lambda)}v$ for all $x \in \mathfrak{A}_{0}, v^{b'}$ has unique bounded extension v^{b} which belongs to $W^{b(\lambda)}$. For, $x^{a(\lambda)}v^{b}y^{\theta(\lambda)} = x^{a(\lambda)}y^{a(\lambda)}v = v^{b}(xy)^{\theta(\lambda)} = v^{b}x^{a(\lambda)}y^{\theta(\lambda)}$ for all $x, y \in \mathfrak{A}_{0}$, and we can choose the $\sigma(\lambda)$ -null set N such that $W^{b(\lambda)} = W^{a(\lambda)'}$ for $\lambda \in N$.

ii) For $v \in \mathfrak{B}$, $j_{\lambda}v \in \mathfrak{B}_{\lambda}$ and $(j_{\lambda}v)^{b} = v^{b*}$. Indeed, $(x^{a(\lambda)}j_{\lambda}v, y^{\theta(\lambda)}) = (j_{\lambda}v, x^{*a(\lambda)}y^{\theta(\lambda)}) = (j_{\lambda}(x^{*}y)^{\theta(\lambda)}, v) = ((y^{*}x)^{\theta(\lambda)}, v) = (y^{*a(\lambda)}x^{\theta(\lambda)}, v) = (x^{\theta(\lambda)}, y^{a(\lambda)}v) = (x^{\theta(\lambda)}, v^{b}y^{\theta(\lambda)}) = (v^{b*}x^{\theta(\lambda)}, y^{\theta(\lambda)})$ for all $x, y \in \mathfrak{A}_{0}$ and hence $x^{a(\lambda)}j_{\lambda}v = v^{b*}x^{\theta(\lambda)}$.

iii) If $v \in \mathfrak{B}_{\lambda}(\lambda \overline{c} N)$, then $||x^{b(\lambda)}v|| \leq M ||x^{\theta(\lambda)}||$ for all $x \in \mathfrak{A}_{0}$ where M is a constant. For, $x^{b(\lambda)}v=j_{\lambda}x^{*a(\lambda)}j_{\lambda}v=j_{\lambda}(j_{\lambda}v)^{b}x^{*\theta(\lambda)}=j_{\lambda}v^{b*}x^{*\theta(\lambda)}$ and

hence $||x^{b(\lambda)}v|| = ||v^{b*}x^{*\theta(\lambda)}|| \le ||v^{b*}|| \cdot ||x^{*\theta(\lambda)}|| = ||v^{b}|| \cdot ||x^{\theta(\lambda)}||.$

Putting $v^{a'}x^{\varrho(\lambda)} = x^{b(\lambda)}v$ for all $x \in \mathfrak{A}_0$, $v^{a'}$ has a bounded extension v^a in $W^{a(\lambda)}$ such that $(j_{\lambda}v)^a = v^{a*} = j_{\lambda}v^b j_{\lambda}$. Proving only the last equation: $v^{a*}x^{\varrho(\lambda)} = (j_{\lambda}v)^a x^{\varrho(\lambda)} = x^{b(\lambda)} j_{\lambda}v = j_{\lambda}j_{\lambda}x^{b(\lambda)} j_{\lambda}v = j_{\lambda}v^b x^{*\varrho(\lambda)} = j_{\lambda}v^b j_{\lambda}x^{\varrho(\lambda)}$.

iv) $\mathfrak{B}^{a}_{\lambda}(=\{v^{a}; v \in \mathfrak{B}_{\lambda}\})$ and $\mathfrak{B}^{b}_{\lambda}(=\{v^{b}; v \in \mathfrak{B}_{\lambda}\})$ are two-sided ideals in $W^{a(\lambda)}$ and $W^{b(\lambda)}$ respectively. Since for any $v \in \mathfrak{B}_{\lambda}$ and $A \in W^{a(\lambda)}$ $x^{b(\lambda)}Av = Ax^{b(\lambda)}v = Av^{a}x^{\theta(\lambda)}$, $Av \in \mathfrak{B}_{\lambda}$ and $(Av)^{a} = Av^{a}$. Since $(j_{\lambda}v)^{a} = v^{a*}$, $\mathfrak{B}^{a}_{\lambda}$ is s.a. and hence a two-sided ideal in $W^{a(\lambda)}$. The case of $\mathfrak{B}^{b}_{\lambda}$ follows similarly.

v) For any $x \in \mathfrak{A}$ and $y \in \mathfrak{A}_0$, there exists uniquely $v \in \mathfrak{B}_{\lambda}$ such that $(xy)^{a(\lambda)} = z^{b(\lambda)}v$ for all $z \in \mathfrak{A}_0$. For, by iv) $(xy)^{a(\lambda)} = x^{a(\lambda)}y^{a(\lambda)}$ belongs to $\mathfrak{B}_{\lambda}^{a}$ and hence we can find $v \in \mathfrak{B}_{\lambda}$ in the required relation. If $v_1, v_2 \in \mathfrak{B}_{\lambda}$ satisfy $(xy)^{a(\lambda)} z^{\theta(\lambda)} = z^{b(\lambda)}v_1 = z^{b(\lambda)}v_2$ for all $z \in \mathfrak{A}_0$, then $B_{v_1} = B_{v_2}$ for all $B \in W^{b(\lambda)}$ and hence $v_1 = v_2$ in \mathfrak{H}_{λ} .

Denote $(xy)^{\varphi(\lambda)}$ the *v* corresponding to $x \in \mathfrak{A}$, $y \in \mathfrak{A}_0$. Then (3) $(xy)^{\varphi(\lambda)} = x^{a(\lambda)}y^{\theta(\lambda)}$ for $x \in \mathfrak{A}$, $y \in \mathfrak{A}_0$. For, $z^{b(\lambda)}(xy)^{\varphi(\lambda)} = x^{a(\lambda)}y^{a(\lambda)}z^{\theta(\lambda)} = x^{a(\lambda)}y^{\theta(\lambda)} = z^{b(\lambda)}x^{a(\lambda)}y^{\theta(\lambda)}$ for all $z \in \mathfrak{A}_0$.

Similarly $(yx)^{\varphi(\lambda)}$ (for $y \in \mathfrak{A}_0$, $x \in \mathfrak{A}$) is well defined in \mathfrak{B}_{λ} : $z^{\alpha(\lambda)}(yx)^{\varphi(\lambda)} = (yx)^{b(\lambda)} z^{\theta(\lambda)}$ for all $z \in \mathfrak{A}_0$. Then

$$(4) \qquad (yx)^{\varphi(\lambda)} = x^{b(\lambda)}y^{\theta(\lambda)} \qquad \text{for } x \in \mathfrak{A}, y \in \mathfrak{A}_0.$$

For $z^{a(\lambda)}(yx)^{\varphi(\lambda)} = (yx)^{b(\lambda)}z^{\theta(\lambda)} = x^{b(\lambda)}y^{b(\lambda)}z^{\theta(\lambda)} = x^{b(\lambda)}z^{a(\lambda)}y^{\theta(\lambda)} = z^{a(\lambda)}x^{b(\lambda)}y^{\theta(\lambda)}$ for all $z \in \mathfrak{A}_0.$

(5)
$$(x^*y^*)^{\varphi(\lambda)} = j_{\lambda}(yx)^{\varphi(\lambda)}$$
 for all $x \in \mathfrak{A}$ and $y \in \mathfrak{A}_0$.
For, $j_{\lambda}(x^*y^*)^{\varphi(\lambda)} = j_{\lambda}x^{*\alpha(\lambda)}j_{\lambda}y^{\theta(\lambda)} = x^{b(\lambda)}y^{\theta(\lambda)} = (yx)^{\varphi(\lambda)}$.

vi) For any $x \in \mathfrak{A}_0$, $x^{\varphi(\lambda)} = x^{\theta(\lambda)}$ and $x^{\varphi(\lambda)}$ is uniquely determined. For, taking y_x in \mathfrak{A}_0 , $x^{\theta(\lambda)} = (xy_x)^{\theta(\lambda)} = x^{\alpha(\lambda)}y_x^{\theta(\lambda)} = (xy_x)^{\varphi(\lambda)} = x^{\varphi(\lambda)}$.

vii) For any $x, x_1 \in \mathfrak{A}$, $x^{a(\lambda)} \in \mathfrak{B}^a_{\lambda}$ and $(x_1 x)^{\varphi(\lambda)} = x_1^{a(\lambda)} x^{\varphi(\lambda)} = x^{b(\lambda)} x_1^{\varphi(\lambda)}$, and $x^{\varphi(\lambda)}$ is uniquely determined. This follows from the assumption (1), v), vi) and the (3), (4).

viii) $x^{*\varphi(\lambda)} = j_{\lambda} x^{\varphi(\lambda)}$ for all $x \in \mathfrak{A}$. For, taking the y_x as $x = xy_x$, $x^* = y_x^* x^*$, $x^{*\varphi(\lambda)} = (y_x^* x^*)^{\varphi(\lambda)} = j_{\lambda} (xy_x)^{\varphi(\lambda)} = j_{\lambda} x^{\varphi(\lambda)}$.

ix) Putting $\pi_{\lambda}(\sum_{k=1}^{n} x_{k}y_{k}) = \sum_{k=1}^{n} (x_{k}^{\varphi(\lambda)}, j_{\lambda}y_{k}^{\varphi(\lambda)}), \pi_{\lambda}(\cdot)$ is well defined on \mathfrak{A}^{2} , and it is *G*-stationary semi-trace.

Indeed, if $\sum_{k=1}^{n} x_k y_k = \sum_{i=1}^{m} x'_i y'_i$, then for any $z \in \mathfrak{A}_0$

$$\begin{split} \sum_{k=1}^{n} (z^{a(\lambda)} x_k^{p(\lambda)}, \ j_\lambda y_k^{z(\lambda)}) &= \sum (x_k^{p(\lambda)}, \ z^{*a(\lambda)} y_k^{*p(\lambda)}) = \sum (x_k^{p(\lambda)}, \ y_k^{*b(\lambda)} z^{*p(\lambda)}) \\ &= \sum (y_k^{p(\lambda)} x_k^{p(\lambda)}, \ z^{*p(\lambda)}) = (\sum (x_k y_k)^{p(\lambda)}, \ j_\lambda z^{p(\lambda)}) \\ &= (\sum_{i=1}^{m} (x_i' y_i')^{p(\lambda)}, \ j_\lambda z^{p(\lambda)}) = \sum (z^{a(\lambda)} x_i'^{p(\lambda)}, \ j_\lambda y_i'^{p(\lambda)}). \end{split}$$

Taking $\{z_{\beta}\} \subset \mathfrak{A}_{0}$ such that $z_{\beta}^{a(\lambda)} \to I$ (weakly), $\sum (x_{k}^{\varphi(\lambda)}, j_{\lambda}y_{k}^{g(\lambda)}) = \sum (x_{i}'^{\varphi(\lambda)}, j_{\lambda}y_{i}'^{\varphi(\lambda)})$. Hence $\pi_{\lambda}(\sum x_{k}y_{k}) = \pi_{\lambda}(\sum x_{i}'y_{i}')$. For any $x, y \in \mathfrak{A}, \pi_{\lambda}(xy) = (y^{\varphi(\lambda)}, j_{\lambda}x^{\varphi(\lambda)}) = (x^{\varphi(\lambda)}, j_{\lambda}y^{\varphi(\lambda)}) = \pi_{\lambda}(yx)$ and $\pi_{\lambda}((xy)^{*}xy) = ||(xy)^{\varphi(\lambda)}||^{2} = ||x^{a(\lambda)}y^{\varphi(\lambda)}||^{2}$

H. UMEGAKI

 $\leq ||x^{a(\lambda)}||^2 \cdot ||y^{\varphi(\lambda)}||^2 \leq ||x||^2 \cdot \pi_{\lambda}(y^*y). \quad \text{Taking } \{z_{\beta}\} \subset \mathfrak{A}_0 \text{ such that } z_{\beta}^{a(\lambda)} \\ \xrightarrow{\rightarrow} I \text{ (strongly), } ||z_{\beta}^{a(\lambda)}x^{\varphi(\lambda)} - x^{\varphi(\lambda)}|| \xrightarrow{\rightarrow} 0. \quad \text{Hence } ||x^{\varphi(\lambda)} - e_a^{a(\lambda)}x^{\varphi(\lambda)}|| \leq ||x^{\varphi(\lambda)} - z_{\beta}^{a(\lambda)}x^{\varphi(\lambda)}|| + ||(z_{\beta}x)^{\varphi(\lambda)} - e_a^{a(\lambda)}z_{\beta}^{a(\lambda)}x^{\varphi(\lambda)}|| + ||e_a^{a(\lambda)}z_{\beta}^{a(\lambda)}x^{\varphi(\lambda)} - e_a^{a(\lambda)}x^{\varphi(\lambda)}|| \leq ||x^{\varphi(\lambda)} - z_{\beta}^{a(\lambda)}x^{\varphi(\lambda)}|| + ||z_{\beta} - e_a z_{\beta}|| \cdot ||x^{\varphi(\lambda)}|| + ||e_a^{a}|| \cdot ||z_{\beta}^{a(\lambda)}x^{\varphi(\lambda)} - x^{\varphi(\lambda)}|| = ||x^{\varphi(\lambda)} - x_{\beta}^{a(\lambda)}x^{\varphi(\lambda)}|| + ||z_{\beta} - e_a z_{\beta}|| \cdot ||x^{\varphi(\lambda)}|| + ||e_a^{a}|| \cdot ||z_{\beta}^{a(\lambda)}x^{\varphi(\lambda)} - x^{\varphi(\lambda)}|| = ||x^{\varphi(\lambda)} - x^{\varphi(\lambda)}$

For any $x \in \mathfrak{A}$ taking y_x in \mathfrak{A}_0 , $\pi_{\lambda}(x^s) = \pi_{\lambda}(x^s y_x^s) = \pi_{\lambda}(x y_x) = \pi_{\lambda}(x)$ for any $s \in G$. Putting $U'_s(\lambda) x^{g(\lambda)} = x^{sg(\lambda)}$ for all $x \in \mathfrak{A}$, $U'_s(\lambda)$ has uniquely unitary extension $U_s(\lambda)$ which defines a dual unitary representation of G containing the dual ones of G_0 .

These representations $\{x^{a(\lambda)}, x^{b(\lambda)}, j_{\lambda}, \mathfrak{H}_{\lambda}\}$ of \mathfrak{A} and $\{U_{s}(\lambda), \mathfrak{H}_{\lambda}\}$ of G are corresponding to the stationary semi-traces $\pi_{\lambda}(\lambda \bar{\varepsilon} N)$. Since $W_{0}^{(\lambda)} = \{x^{a(\lambda)}, y^{b(\lambda)}, U_{s}(\lambda); x, y \varepsilon \mathfrak{A}, s \varepsilon G_{0}\}, \lambda \bar{\varepsilon} N$, are irreducible on $\mathfrak{H}_{\lambda}, W_{0}^{(\lambda)\prime} = (W^{a(\lambda)} \smile W^{b(\lambda)} \smile W_{G_{0}}(\lambda))' = \{\alpha I_{\lambda}\} = W^{b(\lambda)} \frown W^{a(\lambda)} \frown W_{G}(\lambda)'$. Therefore $\pi_{\lambda}(\cdot), \lambda \varepsilon N$, are G-ergodic semi-traces.

For any $x \in \mathfrak{A}$ taking $y_x \in \mathfrak{A}_0$, $\tau(x) = \tau(xy_x) = (x^0, y_x^{*0}) = \int (x^{\theta(\lambda)}, y_x^{*\theta(\lambda)}) d\sigma(\lambda) = \int (x_x^{\varphi(\lambda)}, y_x^{*\varphi(\lambda)}) d\sigma(\lambda) = \int \pi_\lambda(xy_x) d\sigma(\lambda) = \int \pi_\lambda(x) d\sigma(\lambda).$

Remark. A semi-trace $\tau(\cdot)$ on a D^* -algebra \mathfrak{A} is called pure, if π is not positively linear combination of any linearly independent semi-traces. Then π is pure if and only if $W^a \cap W^b = \{\lambda I\}$ where W^a and W^b are W^* -algebras generated by $\{x^a\}$ and $\{x^b\}$ in the corresponding two-sided representation $\{x^a, x^b, j, \mathfrak{H}\}$. (Cf. Prop. 2 of [3].) The Theorem 4 in the previous paper [3] follows as a special case of Th. in this paper, i.e. the case of the motion G containing only the identity automorphism: for any semi-trace τ of \mathfrak{A} there exists a system of pure semi-traces π_λ such that $\tau(x) = \int \pi_\lambda(x) d\sigma(\lambda)$ for all $x \in \mathfrak{A}$ where $\sigma(\lambda)$ is similar with Th. (The proof of Th. 4 in the paper [3] has been remained as incomplete on choosing the $\sigma(\lambda)$ -null set N such that π_λ are semi-traces for $\lambda \in N$, cf. foot-note 11) of [3].)

References

[1] W. Ambrose: The L_2 -system of unimodular group. I, Trans. Amer. Math. Soc., **65**, 26-48 (1949).

^[2] J. von Neumann: On rings of operators. Reduction theory, Ann. Math., 50, 401-485 (1949).

^[3] H. Umegaki: Decomposition theorems of operator algebra and their applications, Jap. Journ. Math., 22, 27-50 (1952).

³⁾ Let $\pi_0(\cdot)$ be arbitrary but fixed *G*-ergodic semi-trace. If we put $\pi_\lambda(x) = \pi_0(x)$ for all $\lambda \in N$ and $x \in \mathfrak{A}$, $\pi_\lambda(x)$ are determined for all $\lambda \in R$ and *G*-ergodic. Since *N* is $o(\lambda)$ -null set, the $o(\lambda)$ -integration of $\pi_\lambda(x)(x \in \mathfrak{A})$ over *R* is $\tau(x)$.