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75. Ergodic Decomposition of Stationary Linear Functional®

By Hisaharu UMEGAKI
Department of Mathematics, Tokyo Institute of Technology
(Comm. by K. KuNUGI, M.J.A., May 13, 1954)

In this note, we shall prove ergodic decomposition of stationary
semi-trace of a separable D*-algebra with a motion, applying the
reduction theory of von Neumann [2]* and a decomposition of a
two-sided representation [3]. The theorem in this paper contains
the ergodic decompositions of stationary trace on separable C*-algebra
with a motion and the ergodic decomposition of invariant regular
measure on separable locally compact Hausdorff space with a group
of homeomorphisms. (Cf. Th. 4 and Th. 7 of [3].)

Let A be a D*-algebra (:normed =-algebra over the complex
number field) with an approximate identity {e,} and with a motion
G where G is meant by any group of isometric *automorphisms on
A. (Cf. [8].) Let = be a G-stationary semi-trace of ¥, i.e. v is a
linear functional on %* (=self-adjoint (s.a.) subalgebra generated by

{wy; @, ye A}) such that ~(@*2) =0, r(vy)=r(yz)="r@*y*), v((xy)*zy)
=le(Pr(y*y), m((er)*er) — > r(x*2) and 7(@"y)=(zy) for all z, yeU
and seG. Putting N={x; ~(@*x)=0, e A}, N is a two-sided ideal
in A. Let A° be the quotient algebra A/N and 2° the class (A%
containing « which is an incomplete Hilbert space with inner product
@°, ¥)=r(y*z). Let H be the completion of A° with respect to the
norm || 4° || (=+(y*y)""). Putting 9’ =(xy)’, 2’¥°’=(yx)°, j¥°=»*° and
Uy’=y* for all x,ye¥ and se G, {a° 2, j, D} defines a two-sided
representation of 2. (Cf. [8].) Moreover {U,, $} defines a dual
unitary representation of G. Indeed, for any x, ye AUy, Uy®)
=@, ¥*)=ryz*)=° 2°) and Uuy’=y"=Uy*=U,Uy’. Hence U,
has uniquely unitary extension on £ which satisfies the required
relations. These representations are uniquely determined by the
given - within unitary equivalence. (Cf. [3].)

For any collection F' of bounded operators and two W *-algebras
W., W, on a Hilbert space, we denote F” the collection of all bounded
operators commuting for all A¢F and W,_ W, the W*-algebra
generated by W, and W..

Let We, W® and W, be W *-algebras generated by {z; xec %},
{«; veW} and {U;; se G} respectively, then We=W?" and jAj=A*
for all Ae WemaW?®, (Cf. Th. 2 of [8].)

x> This paper is a continuation of the previous paper [3].
1) Numbers in brackets refer to the references at the end of this paper.
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A G-stationary semi-trace +~ is called G-ergodic, if + is not
positively linear combination of any other linearly independent G-
stationary semi-traces of A. Then = is G-ergodic if and only if
{2, 2, U,, J, 9} is irreducible, i.e. W*~W*~Wg={aI}. (Cf.Th.5
of [3].)

Let A be separable with the motion G, then we have

Lemma 1. G contatns an enumerable subset {s,} such that for
any xed and te G there exists {t,}  {s,} satisfying

& —a" || > 0 (n—> o).

The proof of this lemma follows from the similar way in the
proof of Th. 5 of [3].

In the following, we assume that % is a separable D*-algebra
with G and has a G-stationary semi-trace r, and moreover U satisfies
that there is an enumerable subset %, in U with the property that:
for any xc there exists y,e¥, (dependently on x) such that
(1) T =LY,

THEOREM. For the D*-algebra U, there exists a system of G-
ergodic semi-traces ar, such that

(2) @)= f @) do(2) for all ze

where 2 runs over the whole real line R and the weight function o(2)
1s an N-function in the sense of von Neumann. (Cf. [2].)

First we shall prove the following lemma :

Lemma 2. (i) Any semi-trace o of U satisfies that for all x
and ze A

|o@2) | < || 2 || 0(2*2) 20 (Y. y.) 2.
(i) If e(@*rr)=w(@*x) for all xeW and n=1,2,..., then o is G-
stationary.

Proof. (i): le(@?)|=|eo@2y.)| < o((@)*12) 0@ y) 2 < ||z
o(2*2)2w(Y.*y,)?. (ii): For e and te G, taking {£,}T{s,} such
that |2 —a"|| >0 (n—> ), |0(@*2") — w(@*"2") | =| w((@*" —2*")a") | < || 2™
—~2'|-M—->0(n— «) and

| w(x*tnxt)_m(w*tnwtn) l=| w(x*tn(xb__xtn)) I

é ” wt_xtn ” ow(x*’”x‘n)mw(y;”nyi")‘/2
= || & — 2" || - w(x*)"*+ (YY) 2 = 0 (n - o).
Since w(x*nr™)=w(x*r), wl@*2’)=w(@*r). As any x (¢ A)=y,=
(@4 Y)* @+ Yp)+ -+ - 1/4, o(@)=w(x) for all ze¢V and te G.
Proof of THEOREM.® Let G, be subgroup of G generated by

2) Since UsxUs-1y8=uxsay® for all x, yeu, putting z@=x%, xe—xe is uniquely
extended to a *automorphism on the C*-algebra % generated by Ae={x2; xeu}
such that Ae®— A3 (=U;AU;~-1)e, and G induces a motion on ®. Since ® is
separable and || As|=| UsAU;s-1||=||A| for all Ae® and seG, Lem. 1 for (®, G) also
holds. Considering the stationary semi-trace =, on % with respect to the operator
norm (in the place of %), the proof of this theorem may be possible without the assump-
tion |a%|=|x||(xeun, seq).
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{sn} and {x,} dense subset of %. Let %, be countable s.a. subring
in U generated by {x;, ¥°; s, tc G, ye¥W,, n=1,2,...}. Let A, be a
C*-algebra generated by {z% °, U,; x,y£ %, s G,} which is obviously
separable (in the uniform topology) and contains I. Putting
M=W~AW°~Wg, M is a commutative W*-algebra. Since $ is
separable (ef. Lem. 6 of [3]), there exists a direct decomposition
in the sense of von Neumann: H= f H:do() and A ~ f A, (Ae M)

with respect to M, where the N-function (2) is determined by M.
Since W =(Wow W>w W) =W>~ W~ W, there exists a o(2)-null
set N, (C R) such that {A4,; AeU}' = {al,} for 22 N,, and since z°, a°,
U,e M’ (s G,) they are decomposable :

X~ f ¥R g~ f 2P and U,~ f U2).
Putting ¢°= f y¥*®, by Lem. 4 of [3] {a, 2*®, 4,, 9, is a two-sided
representation of A and U,A)(se G,) are unitary on 9, such that
U,(D)=U,QU), Us D=0, UND+U,Q)=U;+Uy)(A) and
Uy @ =y for all se G, and all ye U, excepting a +(1)-null set N,.
Then {2°®, *®, UA); z,yeY,, s¢G,} are irreducible for 1 N,—N,.
Since ¥, is countable, we can find a ¢(1)-null set N, such that
(x+y)0()\)=x9(7~)+x9(7~)’ (xy)e(l):_xu(?\)yﬂ(l):yb(l)x’)(l) and j}\yed)___y*e(}\)

for all z, ye U, and 21 N,.

Let W=», W*® and W,(2) be W*-algebras generated by {a°*;
ey}, {@®; xe W} and {UQ); se G} (e N = (J,N,) respectively.
Because the closed linear extension M (in 9, for 1€ N) of {(xy)*™;
x,ye U} is invariant under z®, y*P(x,yeA,), j» and U, )(se G),
M=9,, and W and W>* are weak closures of {x°*; xeA} and
{@*®; xe A} respectively. (Cf. Lem. 1 of [3].)

Now we shall prove that §, (for arbitrary, but fixed 12 N) is
H-system. (Cf. [1].)

i) A vector ve , is called bounded, if [|z**v]|] < M,||2*™]|| for
all xe%, and a constant M, > 0. Denote B, the collection of all
such ve H,. It is evident that {#°®; xe} TB,. For any veB,,
putting v}/ 2°® =2%*» for all x¢,, v* has unique bounded extension v*
which belongs to W™, For, *®vy’® = g* sy =P (y)°® = 2=y P
for all z,ye¥, and we can choose the o(2)-null set N such that
WP =Ww** for ie N.

ii) For ve®B, jweB, and Gw)=v"*. Indeed, (&**j,v, y°*™)
=, T CYP) = (f@*y)"®, v) = (U*2)'P, v) = F**Pe'P, v) = @',
YO0) =@, Y’'P)="*2*®, y*») for all z,yeU, and hence x*Vj,v
= P Eg I,

iii) If ve®B,(AEN), then ||2"Pv|| < M||2°®|| for all xe%, where
M is a constant. For, 2*®v=7,x*"%5,0=7,(J0)’c*°® =7,0"*x*°*® and
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hence || "M || =[] o"*@** P || < || v** ||« || e* P || =] "] - || "™ |I.

Putting v¥2*® =2>*p for all x¢ %, v* has a bounded extension
v* in W*® guch that (jw)*=v"*=3,0%,. Proving only the last equa-
tion: v*x"® =(7,0)"2"P =2"Pj,0=7,5,8"PF0=7,0"0*°P = 5,1°5,2°®.

iv) B3 (={v*; veB,}) and BL(={v*; veB,}) are two-sided ideals
in W=» and W*® respectively. Since for any ve®, and Ae Wa»
PP Av=A"Py=Ave’®, Ave B, and (Av)*=Av". Since (j,0)*=v™*,
Bg is s.a. and hence a two-sided ideal in W*». The case of B}
follows similarly.

v) For any xeU and ye, there exists uniquely ve B, such
that (xy)*®2*@=2"%» for all zeWA,. For, by iv) (@y)™® =gxPys»
belongs to B} and hence we can find ve B, in the required relation.
If v,, v,e%, satisfy (wy)* P 2"®=2""w,=2"v, for all z¢ ,, then B, =B,
for all Be W*® and hence v,=v, in 9,.

Denote (xy)*™® the v corresponding to xe, ye,. Then
(3) ()PP == PP for xe¥U, yeA,.
For’ zb()‘)(wy)qacl):xa:}x)ya:l)ze()\):xa()\)zb[}\)yﬂ(l)___zb()\)wa()\)yB(?\) for all z 6910.

Similarly (yx)*® (for yeA,, xzA) is well defined in B, : 2%P(yx)*®
=(yx)’P2°® for all zeN,. Then
(4) (y2)?P = PPy for xe A, ye A,
For 25(yx)e = (ya)?P20P == grMgydRI — gh(2atddy 00 — 4ahobM 0 £y
all ze%,.

(5) (@*y* )PP =7,(yx)*® for all xe U and ye N,
For’ j}‘(x*y*)?()‘) :j}\x*ail)j;\ye(l) — xb(l)yecl) — (yx)(PC)‘).

vi) For any ze,, a*®=2°® and x** is uniquely determined.
For, taking y, in %, 2°®=(xy,)*® =a=Pys® = (zy,)* P =ux*®,

vii) For any z,2,e¥, e Bf and (22)*P=xiPr*® =g"Pxz®,
and 2*® is uniquely determined. This follows from the assumption
1), v), vi) and the (8), (4).

viii) &**P=7,2** for all x¢A. For, taking the y, as x=uy,,
o =yrwt, oD = (YR = (Y, P =53,

ix) Putting m(Ea@s) =>0a@i®, 595, m(-) is well defined
on A%, and it is G-stationary semi-trace.

Indeed, if > .xw=>7.xy:, then for any z¢&,

,-?;':(zmxw» TrYEP) =@, g*EPyEEO) = S (P, g EOg )
= Z(y};‘“x}*;@), 2 *'Pm) = (Z(wkylc)q’a), J AZ’F(D)
= (g(x}y;)ﬂn, F22PP) = Ym0 G
Taking {2,} C %, such that 2 — I (weakly), S@:®, fyi®) =S\ a*®,

5Y#®). Hence m(Sxwye) =m(C %w.). For any =, ye, m(xy)=y*™,
)= @, ) =m(yz) and m((ay)*ay) =l @y [ = || 2Pyl
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e ® |y @l S @ |2 -may*y).  Taking {2} C U, such that zi®
__B_)I (strongly), ” z;())x¢cl)_wto(l) “ ? 0. Hence ” x’p(}\)__eg‘(l)m'p(l) ” é
[ 27 — 250 || 4 || (258)P D — eXP2ENTD || 4 || iR g® — giRoged || <
127 || 4 || 23— €2 ||| &% || + [ e |- || 627 —2*|| and for
any €>0 there exists a, such that ||2*®—ei®x*® || < ¢ for a>a, or
m((e®)*e.4) —> my(x*x). Therefore () (1€ N) are semi-traces of U.
For and x, ¥y e and se G, m(xy’)=(u"P, o**®)=(U,)y*®, U ()x**®)
=(y*®, 2**P)=mr,(zy). By Lem. 2 m,(.), 2 N, are G-stationary and
we have ix).

For any ze¥ taking ¥, in %, m.(&°)=m(2'y})=m(2Yy,) =m\(x) for
any seG. Putting UlD)x*P=2a"® for all ze¢A, U)2) has uniquely
unitary extension Uy(4) which defines a dual unitary representation
of G containing the dual ones of G,.

These representations {z°®, 2*®, 7,, 9,} of U and {U,), H;} of
G are corresponding to the stationary semi-traces =,(12 N). Since
WP = {z"®, yp® U A); x, ye U, se Gy}, Ae N, are irreducible on 9,,
WP =(W o WP We (D)) = {al} = WP AW PA~AWa(2).  There-
fore m(-), Ae N, are G-ergodic semi-traces.

For any ze ¥ taking y,e ¥, r(@)=+(xy,) =", y}°)= f (&P, yro®)y
do®)= [(@®, yr®)do()= [mion)do@)= [ m@do(@).”

Remark. A semi-trace +(-) on a D*-algebra % is called pure, if
7 is not positively linear combination of any linearly independent
semi-traces. Then = is pure if and only if W ~W?°={il} where
We and W?® are W *-algebras generated by {x°} and {2’} in the
corresponding two-sided representation {x% 2,7, $}. (Cf. Prop. 2 of
[8].) The Theorem 4 in the previous paper [3] follows as a special
case of Th. in this paper, i.e. the case of the motion G containing
only the identity automorphism: for any semi-trace -~ of U there

exists a system of pure semi-traces s, such that ~(x)= f m(x)da(R)

for all xe¥ where ¢(2) is similar with Th. (The proof of Th. 4 in the
paper [3] has been remained as incomplete on choosing the o(2)-null
set N such that =, are semi-traces for 2€.N, cf. foot-note 11) of [3].)
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3) Let ny(:) be arbitrary but fixed G-ergodic semi-trace. If we put =,(x)=r(x)
for all 2eN and x e, n,(x) are determined for all 1e R and G-ergodic. Since N is
o(A)-null set, the o(d)-integration of z,(x)(xe%) over R is =(x).



