75. Ergodic Decomposition of Stationary Linear Functional*)

By Hisaharu Umegaki
Department of Mathematics, Tokyo Institute of Technology
(Comm. by K. Kunugi, m.J.A., May 13, 1954)

In this note, we shall prove ergodic decomposition of stationary semi-trace of a separable D^{*}-algebra with a motion, applying the reduction theory of von Neumann [2] ${ }^{1)}$ and a decomposition of a two-sided representation [3]. The theorem in this paper contains the ergodic decompositions of stationary trace on separable C^{*}-algebra with a motion and the ergodic decomposition of invariant regular measure on separable locally compact Hausdorff space with a group of homeomorphisms. (Cf. Th. 4 and Th. 7 of [3].)

Let \mathfrak{N} be a D^{*}-algebra (: normed *-algebra over the complex number field) with an approximate identity $\left\{e_{\alpha}\right\}$ and with a motion G where G is meant by any group of isometric *automorphisms on \mathfrak{N}. (Cf. [3].) Let τ be a G-stationary semi-trace of \mathfrak{H}, i.e. τ is a linear functional on \mathfrak{H}^{2} (=self-adjoint (s.a.) subalgebra generated by $\{x y ; x, y \varepsilon \sharp\}$) such that $\tau\left(x^{*} x\right) \geqq 0, \tau(x y)=\tau(y x)=\bar{\tau}\left(x^{*} y^{*}\right), \tau\left((x y)^{*} x y\right)$ $\leqq\|x\|^{2} \tau\left(y^{*} y\right), \tau\left(\left(e_{\alpha} x\right)^{*} e_{\alpha} x\right) \xrightarrow[\alpha]{\longrightarrow} \tau\left(x^{*} x\right)$ and $\tau\left(x^{s} y^{s}\right)=\tau(x y)$ for all $x, y \varepsilon, \mathfrak{Z}$ and $s \varepsilon G$. Putting $\mathfrak{R}=\left\{x ; \tau\left(x^{*} x\right)=0, x \varepsilon \mathfrak{N}\right\}, \mathfrak{R}$ is a two-sided ideal in \mathfrak{N}. Let \mathfrak{Y}^{θ} be the quotient algebra $\mathfrak{H} / \mathfrak{Y}$ and x^{θ} the class $\left(\varepsilon \mathfrak{H}^{\theta}\right)$ containing x which is an incomplete Hilbert space with inner product $\left(x^{\theta}, y^{\theta}\right)=\tau\left(y^{*} x\right)$. Let \mathfrak{S} be the completion of \mathfrak{H}^{θ} with respect to the norm $\left\|y^{\theta}\right\|\left(=\tau\left(y^{*} y\right)^{1 / 2}\right)$. Putting $x^{a} y^{\theta}=(x y)^{\theta}, x^{b} y^{\theta}=(y x)^{\theta}, j y^{\theta}=y^{* \theta}$ and $U_{s} y^{\ominus}=y^{s \theta}$ for all $x, y \varepsilon \mathfrak{A}$ and $s \varepsilon G,\left\{x^{a}, x^{b}, j, \mathfrak{F}\right\}$ defines a two-sided representation of \mathfrak{H}. (Cf. [3].) Moreover $\left\{U_{s}, \mathfrak{F}\right\}$ defines a dual unitary representation of G. Indeed, for any $x, y \varepsilon \mathfrak{N}\left(U_{s} y^{9}, U_{s} y^{\theta}\right)$ $=\left(x^{s \theta}, y^{s \theta}\right)=\tau\left(y^{s} x^{* s}\right)=\left(y^{\theta}, x^{\theta}\right)$ and $U_{s t} y^{\theta}=y^{s \theta}=U_{t} y^{s \theta}=U_{t} U_{s} y^{\theta}$. Hence U_{s} has uniquely unitary extension on \mathfrak{J} which satisfies the required relations. These representations are uniquely determined by the given τ within unitary equivalence. (Cf. [3].)

For any collection F of bounded operators and two W^{*}-algebras W_{1}, W_{2} on a Hilbert space, we denote F^{\prime} the collection of all bounded operators commuting for all $A \varepsilon F$ and $W_{1} \smile W_{2}$ the W^{*}-algebra generated by W_{1} and W_{2}.

Let W^{a}, W^{b} and W_{G} be W^{*}-algebras generated by $\left\{x^{c} ; x \varepsilon \mathfrak{R}\right\}$, $\left\{x^{b} ; x \varepsilon\{\mathfrak{l}\}\right.$ and $\left\{U_{s} ; s \varepsilon G\right\}$ respectively, then $W^{a}=W^{\prime \prime}$ and $j A j=A^{*}$ for all $A \varepsilon W^{a} \frown W^{b}$. (Cf. Th. 2 of [3].)
*) This paper is a continuation of the previous paper [3].

1) Numbers in brackets refer to the references at the end of this paper.

A G-stationary semi-trace τ is called G-ergodic, if τ is not positively linear combination of any other linearly independent G stationary semi-traces of \mathfrak{A}. Then τ is G-ergodic if and only if $\left\{x^{a}, x^{b}, U_{s}, j, \mathfrak{y}\right\}$ is irreducible, i. e. $W^{a} \frown W^{b} \frown W_{G}^{\prime}=\{\lambda I\}$. (Cf. Th. 5 of [3].)

Let \mathfrak{H} be separable with the motion G, then we have
Lemma 1. G contains an enumerable subset $\left\{s_{n}\right\}$ such that for any $x \in \mathfrak{\Re}$ and $t \varepsilon G$ there exists $\left\{t_{n}\right\} \subset\left\{s_{n}\right\}$ satisfying

$$
\left\|x^{t n}-x^{t}\right\| \rightarrow 0(n \rightarrow \infty) .
$$

The proof of this lemma follows from the similar way in the proof of Th. 5 of [3].

In the following, we assume that \mathfrak{H} is a separable D^{*}-algebra with G and has a G-stationary semi-trace τ, and moreover \mathfrak{A} satisfies that there is an enumerable subset \mathfrak{N}_{c} in \mathfrak{A} with the property that: for any $x \varepsilon\left\{\right.$ there exists $y_{x} \varepsilon \mathfrak{A}_{c}$ (dependently on x) such that (1)

$$
x=x y_{x} .
$$

Theorem. For the D^{*}-algebra \mathfrak{N}, there exists a system of G ergodic semi-traces π_{λ} such that

$$
\begin{equation*}
\tau(x)=\int \pi_{\lambda}(x) d \sigma(\lambda) \quad \text { for all } x \varepsilon \mathfrak{A} \tag{2}
\end{equation*}
$$

where λ runs over the whole real line R and the weight function $\sigma(\lambda)$ is an N-function in the sense of von Neumann. (Cf. [2].)

First we shall prove the following lemma:
Lemma 2. (i) Any semi-trace ω of \mathfrak{H} satisfies that for all x and $z \varepsilon \mathfrak{H}$

$$
|\omega(x z)| \leqq\|x\| \omega\left(z^{*} z\right)^{1 / 2} \omega\left(y_{z}^{*} y_{z}\right)^{1 / 2} .
$$

(ii) If $\omega\left(x^{* s n} x^{s n}\right)=\omega\left(x^{*} x\right)$ for all $x \varepsilon \mathfrak{N}$ and $n=1,2, \ldots$, then ω is G stationary.

Proof. (i): $|\omega(x z)|=\left|\omega\left(x z y_{z}\right)\right| \leqq \omega\left((x z)^{*} x z\right)^{1 / 2} \omega\left(y_{z}^{*} y_{z}\right)^{1 / 2} \leqq\|x\|$ $\omega\left(z^{*} z\right)^{1 / 2} \omega\left(y_{z}{ }^{*} y_{z}\right)^{1 / 2}$. (ii): For $x \varepsilon \mathfrak{N}$ and $t \varepsilon G$, taking $\left\{t_{n}\right\} \subset\left\{s_{n}\right\}$ such that $\left\|x^{t_{n}}-x^{t}\right\| \rightarrow 0(n \rightarrow \infty),\left|\omega\left(x^{* t} x^{t}\right)-\omega\left(x^{* t_{n}} x^{t}\right)\right|=\left|\omega\left(\left(x^{* t_{n}}-x^{* t}\right) x^{t}\right)\right| \leqq \| x^{t_{n}}$ $-x^{t} \| \cdot M \rightarrow 0(n \rightarrow \infty)$ and
$\left|\omega\left(x^{* t_{n}} x^{t}\right)-\omega\left(x^{* t_{n}} x^{t_{n}}\right)\right|=\left|\omega\left(x^{* t_{n}}\left(x^{t}-x^{t_{n}}\right)\right)\right|$
$\leqq\left\|x^{t}-x^{t_{n}}\right\| \cdot \omega\left(x^{* t_{n}} x^{t_{n}}\right)^{1 / 2} \omega\left(y_{x}^{* t_{n}} y_{x}^{t_{n}}\right)^{1 / 2}$
$=\left\|x^{t}-x^{t_{n}}\right\| \cdot \omega\left(x^{*} x\right)^{1 / 2} \cdot \omega\left(y_{x}^{*} y_{x}\right)^{1 / 2} \rightarrow 0(n \rightarrow \infty)$.
Since $\omega\left(x^{* t_{n}} x^{t_{n}}\right)=\omega\left(x^{*} x\right), \omega\left(x^{* t} x^{t}\right)=\omega\left(x^{*} x\right)$. As any $x(\varepsilon \mathfrak{H})=x y_{x}=$ $\left[\left(x+y_{x}\right) *\left(x+y_{x}\right)+\cdots\right] / 4, \omega\left(x^{t}\right)=\omega(x)$ for all $x \varepsilon \mathfrak{N}$ and $t \varepsilon G$.

Proof of Theorem. ${ }^{2)}$ Let G_{0} be subgroup of G generated by
2) Since $U_{s} x U_{s}-1 y^{\theta}=x^{s a} y^{\theta}$ for all $x, y \varepsilon \mathfrak{A}$, putting $x^{a s}=x^{s a}, x^{a} \rightarrow x^{a s}$ is uniquely extended to a $*_{\text {automorphism on the } C^{*} \text {-algebra } \Re \text { generated by } A^{a}=\left\{x^{a} ; x \in \mathfrak{n}\right\}}^{\}}$ such that $A \varepsilon \Re \rightarrow A^{s}\left(=U_{s} A U_{s}-1\right) \varepsilon \Re$, and G induces a motion on \Re. Since \Re is separable and $\left\|A^{s}\right\|=\left\|U_{s} A U_{s^{-1}}\right\|=\|A\|$ for all $A \varepsilon \Re$ and $s \varepsilon G$, Lem. 1 for (\Re, G) also holds. Considering the stationary semi-trace π_{λ} on \mathfrak{y}^{a} with respect to the operator norm (in the place of \mathfrak{a}), the proof of this theorem may be possible without the assumption $\left\|x^{s}\right\|=\|x\|(x \in \mathfrak{I}, s \varepsilon G)$.
$\left\{s_{n}\right\}$ and $\left\{x_{n}\right\}$ dense subset of \mathfrak{N}. Let \mathfrak{N}_{0} be countable s.a. subring in \mathfrak{H} generated by $\left\{x_{n}^{\curvearrowright}, y^{t} ; s, t \varepsilon G_{0}, y \varepsilon \mathfrak{N}_{c}, n=1,2, \ldots\right\}$. Let \mathfrak{N}_{1} be a C^{*}-algebra generated by $\left\{x^{a}, y^{b}, U_{s} ; x, y \varepsilon \mathfrak{A}, s \varepsilon G_{0}\right\}$ which is obviously separable (in the uniform topology) and contains I. Putting $\boldsymbol{M}=W^{a} \frown W^{b} \frown W_{G_{0}}^{\prime}, \quad \boldsymbol{M}$ is a commutative W^{*}-algebra. Since \mathfrak{F} is separable (cf. Lem. 6 of [3]), there exists a direct decomposition in the sense of von Neumann: $\mathfrak{y}=\int \mathfrak{F}_{\lambda} d \sigma(\lambda)$ and $A \sim \int A_{\lambda}\left(A \varepsilon M^{\prime}\right)$ with respect to M, where the N-function $\sigma(\lambda)$ is determined by M. Since $\mathfrak{Y}_{1}^{\prime}=\left(W^{a} \smile W^{b} \smile W_{G_{0}}\right)^{\prime}=W^{b} \frown W^{a} \frown W_{G_{0}}^{\prime}$, there exists a $\sigma(\lambda)$-null set $N_{1}(\subset R)$ such that $\left\{A_{\lambda} ; A \varepsilon \mathfrak{H}_{1}\right\}^{\prime}=\left\{\alpha I_{\lambda}\right\}$ for $\lambda \bar{\varepsilon} N_{1}$, and since x^{a}, x^{b}, $U_{s} \varepsilon \boldsymbol{M}^{\prime}\left(s \varepsilon G_{0}\right)$ they are decomposable:

$$
x^{a} \sim \int x^{a(\lambda)}, x^{b} \sim \int x^{b(\lambda)} \text { and } U_{s} \sim \int U_{s}(\lambda)
$$

Putting $y^{\theta}=\int y^{\theta(\lambda)}$, by Lem. 4 of [3] $\left\{x^{a(\lambda)}, x^{b(\lambda)}, j_{\lambda}, \mathfrak{F}_{\lambda}\right\}$ is a two-sided representation of \mathfrak{H} and $U_{s}(\lambda)\left(s \varepsilon G_{0}\right)$ are unitary on \mathscr{S}_{λ} such that $U_{s t}(\lambda)=U_{t}(\lambda) U_{s}(\lambda), \quad U_{s^{-1}}(\lambda)=U_{s}(\lambda)^{-1}, \quad U_{s}(\lambda)+U_{t}(\lambda)=\left(U_{s}+U_{t}\right)(\lambda) \quad$ and $U_{s}(\lambda) y^{\theta(\lambda)}=y^{s(\lambda)}$ for all $s \varepsilon G_{0}$ and all $y \varepsilon \mathfrak{N}_{0}$ excepting a $\sigma(\lambda)$-null set N_{2}. Then $\left\{x^{a(\lambda)}, y^{b(\lambda)}, U_{s}(\lambda) ; x, y \varepsilon \mathfrak{n}_{0}, s \varepsilon G_{0}\right\}$ are irreducible for $\lambda \bar{\varepsilon} N_{1} \smile N_{2}$. Since \mathfrak{N}_{0} is countable, we can find a $\sigma(\lambda)$-null set N_{3} such that

$$
(x+y)^{\theta(\lambda)}=x^{9(\lambda)}+x^{\theta(\lambda)},(x y)^{\theta(\lambda)}=x^{a(\lambda)} y^{\theta(\lambda)}=y^{b(\lambda)} x^{9(\lambda)} \text { and } j_{\lambda} y^{\theta(\lambda)}=y^{* \theta(\lambda)}
$$ for all $x, y \varepsilon \mathfrak{N}_{0}$ and $\lambda \bar{\varepsilon} N_{3}$.

Let $W^{a(\lambda)}, W^{v(\lambda)}$ and $W_{G}(\lambda)$ be W^{*}-algebras generated by $\left\{x^{a(\lambda)}\right.$; $\left.x \varepsilon \mathfrak{\Re}_{0}\right\},\left\{x^{b(\lambda)} ; x \varepsilon \mathfrak{A}_{0}\right\}$ and $\left\{U_{s}(\lambda) ; s \varepsilon G_{0}\right\} \quad\left(\lambda \bar{\varepsilon} N=U_{i} N_{i}\right)$ respectively. Because the closed linear extension \mathfrak{M} (in \mathfrak{S}_{λ} for $\lambda \bar{\varepsilon} N$) of $\left\{(x y)^{\theta(\lambda)}\right.$; $\left.x, y \varepsilon \mathfrak{I}_{0}\right\}$ is invariant under $x^{a(\lambda)}, y^{b(\lambda)}\left(x, y \varepsilon \mathfrak{A}_{0}\right), \quad j_{\lambda}$ and $U_{s}(\lambda)\left(s \varepsilon G_{0}\right)$, $\mathfrak{M}=\mathfrak{S}_{\lambda}$, and $W^{a(\lambda)}$ and $W^{b(\lambda)}$ are weak closures of $\left\{x^{a(\lambda)} ; x \varepsilon \mathfrak{R}\right\}$ and $\left\{0^{0, \lambda)} ; x \varepsilon \mathfrak{N}\right\}$ respectively. (Cf. Lem. 1 of [3].)

Now we shall prove that \mathscr{S}_{λ} (for arbitrary, but fixed $\lambda \vec{\varepsilon} N$) is H-system. (Cf. [1].)
i) A vector $v \varepsilon \mathscr{S}_{\lambda}$ is called bounded, if $\left\|x^{a(\lambda)} v\right\| \leqq M_{v}\left\|x^{9(\lambda)}\right\|$ for all $x \varepsilon \mathfrak{N}_{0}$ and a constant $M_{v}>0$. Denote \mathfrak{B}_{λ} the collection of all such $v \varepsilon \mathfrak{F}_{\lambda}$. It is evident that $\left\{x^{9(\lambda)} ; x \varepsilon \mathfrak{H}_{0}\right\} \subset \mathfrak{B}_{\lambda}$. For any $v \varepsilon \mathfrak{B}_{\lambda}$, putting $v_{\lambda}^{b \prime} x^{\theta(\lambda)}=x^{a(\lambda)} v$ for all $x \varepsilon \mathfrak{N}_{0}, v^{b l}$ has unique bounded extension v^{b} which belongs to $W^{0(\lambda)}$. For, $x^{a(\lambda)} v^{b} y^{\theta(\lambda)}=x^{a(\lambda)} y^{a(\lambda)} v=v^{b}(x y)^{\theta(\lambda)}=v^{b} x^{a(\lambda)} y^{\theta(\lambda)}$ for all $x, y \varepsilon \mathfrak{r}_{0}$, and we can choose the $\sigma(\lambda)$-null set N such that $W^{o(\lambda)}=W^{a(\lambda) \prime}$ for $\lambda \bar{\varepsilon} N$.
ii) For $v \varepsilon \mathfrak{B}, j_{\lambda} v \varepsilon \mathfrak{B}_{\lambda}$ and $\left(j_{\lambda} v\right)^{b}=v^{b *}$. Indeed, $\left(x^{a(\lambda)} j_{\lambda} v, y^{\theta(\lambda)}\right)$ $=\left(j_{\lambda} v, x^{* a(\lambda)} y^{\theta(\lambda)}\right)=\left(j_{\lambda}\left(x^{*} y\right)^{\theta(\lambda)}, v\right)=\left(\left(y^{*} x\right)^{\theta(\lambda)}, v\right)=\left(y^{* a(\lambda)} x^{\theta(\lambda)}, v\right)=\left(x^{\theta(\lambda)}\right.$, $\left.y^{a(\lambda)} v\right)=\left(x^{\theta(\lambda)}, v^{b} y^{\theta(\lambda)}\right)=\left(v^{b *} x^{\theta(\lambda)}, y^{\theta(\lambda)}\right)$ for all $x, y \varepsilon \mathfrak{U}_{0}$ and hence $x^{a-\lambda)} j_{\lambda} v$ $=v^{b *} x^{9(\lambda)}$.
iii) If $v \varepsilon \mathfrak{B}_{\lambda}(\lambda \bar{\varepsilon} N)$, then $\left\|x^{b \lambda \lambda)} v\right\| \leqq M\left\|x^{9(\lambda)}\right\|$ for all $x \varepsilon \mathfrak{N}_{0}$ where M is a constant. For, $x^{b(\lambda)} v=j_{\lambda} x^{* a(\lambda)} j_{\lambda} v=j_{\lambda}\left(j_{\lambda} v\right)^{b} x^{* \theta(\lambda)}=j_{\lambda} v^{b *} x^{* \theta(\lambda)}$ and
hence $\left\|x^{b(\lambda)} v\right\|=\left\|v^{b *} x^{* \theta(\lambda)}\right\| \leqq\left\|v^{b *}\right\| \cdot\left\|x^{* \theta(\lambda)}\right\|=\left\|v^{b}\right\| \cdot\left\|x^{\theta(\lambda)}\right\|$.
Putting $v^{a \prime} x^{\theta(\lambda)}=x^{b(\lambda)} v$ for all $x \varepsilon \mathfrak{A}_{0}, v^{a \prime}$ has a bounded extension v^{a} in $W^{a(\lambda)}$ such that $\left(j_{\lambda} v\right)^{a}=v^{a *}=j_{\lambda} v^{b} j_{\lambda}$. Proving only the last equation: $v^{a *} x^{\theta(\lambda)}=\left(j_{\lambda} v\right)^{a} x^{\theta(\lambda)}=x^{b(\lambda)} j_{\lambda} v=j_{\lambda} j_{\lambda} x^{b(\lambda)} j_{\lambda} v=j_{\lambda} v^{b} x^{* \theta(\lambda)}=j_{\lambda} v^{b} j_{\lambda} x^{\theta(\lambda)}$.
iv) $\mathfrak{B}_{\lambda}^{a}\left(=\left\{v^{a} ; v \varepsilon \mathfrak{B}_{\lambda}\right\}\right)$ and $\mathfrak{B}_{\lambda}^{b}\left(=\left\{v^{b} ; v \varepsilon \mathfrak{B}_{\lambda}\right\}\right)$ are two-sided ideals in $W^{a(\lambda)}$ and $W^{b(\lambda)}$ respectively. Since for any $v \varepsilon \mathfrak{B}_{\lambda}$ and $A \varepsilon W^{a(\lambda)}$ $x^{b(\lambda)} A v=A x^{b(\lambda)} v=A v^{a} x^{\theta(\lambda)}, A v \varepsilon \mathfrak{B}_{\lambda}$ and $(A v)^{a}=A v^{a}$. Since $\left(j_{\lambda} v\right)^{a}=v^{a *}$, $\mathfrak{B}_{\lambda}^{a}$ is s.a. and hence a two-sided ideal in $W^{a(\lambda)}$. The case of $\mathfrak{B}_{\lambda}^{b}$ follows similarly.
v) For any $x \varepsilon \mathfrak{N}$ and $y \varepsilon \mathfrak{N}_{0}$, there exists uniquely $v \varepsilon \mathfrak{B}_{\lambda}$ such that $(x y)^{a(\lambda)} z^{\theta(\lambda)}=z^{b(\lambda)} v$ for all $z \varepsilon \mathfrak{N}_{0}$. For, by iv) ($\left.x y\right)^{a(\lambda)}=x^{a(\lambda)} y^{a(\lambda)}$ belongs to $\mathfrak{B}_{\lambda}^{\pi}$ and hence we can find $v \varepsilon \mathfrak{B}_{\lambda}$ in the required relation. If $v_{1}, v_{2} \varepsilon \mathfrak{B}_{\lambda}$ satisfy $(x y)^{a(\lambda)} z^{\theta(\lambda)}=z^{b ; \lambda)} v_{1}=z^{b(\lambda \lambda} v_{2}$ for all $z \varepsilon \mathfrak{H}_{0}$, then $B_{v_{1}}=B_{v_{2}}$ for all $B \varepsilon W^{b(\lambda)}$ and hence $v_{1}=v_{2}$ in \mathfrak{F}_{λ}.

Denote $(x y)^{\rho(\lambda)}$ the v corresponding to $x \in \mathfrak{M}, y \in \mathfrak{A}_{0}$. Then

$$
\begin{equation*}
(x y)^{\varphi(\lambda)}=x^{\alpha(\lambda)} y^{\theta(\lambda)} \quad \text { for } x \varepsilon \mathfrak{H}, y \in \mathfrak{M}_{0} . \tag{3}
\end{equation*}
$$

For, $z^{b(\lambda)}(x y)^{\varphi(\lambda)}=x^{a(\lambda)} y^{a(\lambda)} z^{\theta(\lambda)}=x^{a(\lambda)} z^{b(\lambda)} y^{\rho(\lambda)}=z^{b(\lambda)} x^{a(\lambda)} y^{\theta(\lambda)}$ for all $z \varepsilon \mathfrak{H}_{0}$.
Similarly ($y x)^{\varphi(\lambda)}$ (for $y \varepsilon \mathfrak{N}_{0}, x \varepsilon \mathfrak{H}$) is well defined in $\mathfrak{B}_{\lambda}: z^{a(\lambda)}(y x)^{\varphi(\lambda)}$ $=(y x)^{b(\lambda)} z^{\theta(\lambda)}$ for all $z \varepsilon \mathfrak{M}_{0}$. Then

$$
\begin{equation*}
(y x)^{\rho(\lambda)}=x^{b, \lambda)} y^{9(\lambda)} \quad \text { for } x \varepsilon \mathfrak{H}, y \varepsilon \mathfrak{N}_{0} . \tag{4}
\end{equation*}
$$

For $z^{a(\lambda)}(y x)^{\theta,(\lambda)}=(y x)^{b(\lambda)} z^{\theta(\lambda)}=x^{b(\lambda)} y^{b(\lambda)} z^{\theta(\lambda)}=x^{b(\lambda)} z^{a(\lambda)} y^{\theta(\lambda)}=z^{a(\lambda)} x^{b(\lambda)} y^{\theta(\lambda)}$ for all $z \varepsilon \mathfrak{N}_{0}$.

$$
\begin{equation*}
\left(x^{*} y^{*}\right)^{\varphi(\lambda)}=j_{\lambda}(y x)^{\rho(\lambda)} \quad \text { for all } x \varepsilon \mathfrak{N} \text { and } y \varepsilon \mathfrak{N}_{0} . \tag{5}
\end{equation*}
$$

For, $j_{\lambda}\left(x^{*} y^{*}\right)^{\rho(\lambda)}=j_{\lambda} x^{* a(\lambda)} j_{\lambda} y^{\theta(\lambda)}=x^{b(\lambda)} y^{\theta(\lambda)}=(y x)^{\varphi(\lambda)}$.
vi) For any $x \varepsilon \mathfrak{N}_{0}, x^{\varphi \rho(\lambda)}=x^{9(\lambda)}$ and $x^{\varphi(\lambda)}$ is uniquely determined. For, taking y_{x} in $\mathfrak{U}_{0}, x^{\theta(\lambda)}=\left(x y_{x}\right)^{\theta(\lambda)}=x^{a(\lambda)} y_{x}^{\theta(\lambda)}=\left(x y_{x}\right)^{\varphi(\lambda)}=x^{\rho(\lambda)}$.
vii) For any $x, x_{1} \varepsilon \mathfrak{N}, x^{a(\lambda)} \varepsilon \mathfrak{B}_{\lambda}^{a}$ and $\left(x_{1} x\right)^{\rho(\lambda)}=x_{1}^{\alpha(\lambda)} x^{p(\lambda)}=x^{b(\lambda)} x_{1}^{\rho(\lambda)}$, and $x^{\rho(\lambda)}$ is uniquely determined. This follows from the assumption (1), v), vi) and the (3), (4).
viii) $x^{* \rho(\lambda)}=j_{\lambda} x^{\beta(\lambda)}$ for all $x \varepsilon$ ㅇ. For, taking the y_{x} as $x=x y_{x}$, $x^{*}=y_{x}^{*} x^{*}, x^{* \varphi(\lambda)}=\left(y_{x}^{*} x^{*}\right)^{\rho(\lambda)}=j_{\lambda}\left(x y_{x}\right)^{\rho(\lambda)}=j_{\lambda} x^{\rho \rho(\lambda)}$.
ix) Putting $\pi_{\lambda}\left(\sum_{k=1}^{n} x_{k} y_{k}\right)=\sum_{k=1}^{n}\left(x_{k}^{q(\lambda)}, j_{\lambda} y_{k}^{p(\lambda)}\right), \pi_{\lambda}(\cdot)$ is well defined on \mathfrak{H}^{2}, and it is G-stationary semi-trace.

Indeed, if $\sum_{k=1}^{n} x_{k} y_{k}=\sum_{i=1}^{m} x_{i}^{\prime} y_{i}^{\prime}$, then for any $z \varepsilon \mathfrak{H}_{0}$

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(z^{a(\lambda)} x_{k}^{\rho(\lambda)}, j_{\lambda} y_{k}^{\rho(\lambda)}\right)=\sum\left(x_{k}^{\circ \rho(\lambda)}, z^{* a(\lambda)} y_{k}^{* \varphi(\lambda)}\right)=\sum\left(x_{k}^{\rho \rho(\lambda)}, y_{k}^{* \rho(\lambda)} z^{* \varphi(\lambda)}\right) \\
& =\sum\left(y_{k}^{3(\lambda)} x_{k}^{\rho(\lambda)}, z^{* \rho(\lambda)}\right)=\left(\sum\left(x_{k} y_{k}\right)^{\varphi(\lambda)}, j_{\lambda} z^{\rho(\lambda)}\right) \\
& =\left(\sum_{i=1}^{m}\left(x_{i}^{\prime} y_{i}^{\prime}\right)^{\varphi(\lambda)}, j_{\lambda} \psi^{\rho(\lambda)}\right)=\sum\left(z^{a(\lambda)} x_{i}^{\prime \varphi(\lambda)}, j_{\lambda} y_{i}^{\prime \varphi(\lambda)}\right) .
\end{aligned}
$$

Taking $\left\{z_{\beta}\right\} \subset \mathfrak{A}_{0}$ such that $z_{\beta}^{a(\lambda)} \rightarrow I$ (weakly), $\sum\left(x_{k}^{\rho(\lambda)}, j_{\lambda} y_{k}^{\rho(\lambda)}\right)=\sum\left(x_{i}^{\prime \rho(\lambda)}\right.$, $\left.j_{\lambda} y_{i}^{\prime \varphi(\lambda)}\right)$. Hence $\pi_{\lambda}\left(\sum x_{k} y_{k}\right)=\pi_{\lambda}\left(\sum x_{i}^{\prime} y_{i}^{\prime}\right)$. For any $x, y \varepsilon \mathfrak{A}, \pi_{\lambda}(x y)=\left(y^{\rho(\lambda)}\right.$, $\left.j_{\lambda} x^{\rho(\lambda)}\right)=\left(x^{\rho(\lambda)}, j_{\lambda} y^{\rho(\lambda)}\right)=\pi_{\lambda}(y x)$ and $\pi_{\lambda}\left((x y)^{*} x y\right)=\left\|(x y)^{\varphi(\lambda)}\right\|^{2}=\left\|x^{a(\lambda)} y^{\rho(\lambda)}\right\|^{2}$
$\leqq\left\|x^{a(\lambda)}\right\|^{2} \cdot\left\|y^{\rho(\lambda)}\right\|^{2} \leqq\|x\|^{2} \cdot \pi_{\lambda}\left(y^{*} y\right)$. Taking $\left\{z_{\beta}\right\} \subset \mathfrak{N}_{0}$ such that $z_{\beta}^{n(\lambda)}$ $\rightarrow I$ (strongly), $\left\|z_{\beta}^{n(\lambda)} x^{p(\lambda)}-x^{0(\lambda)}\right\| \longrightarrow 0$. Hence $\left\|x^{\wedge(\lambda)}-e_{\alpha}^{a(\lambda)} x^{p(\lambda)}\right\| \leqq$ $\left\|x^{\rho(\lambda)}-z_{\beta}^{n(\lambda)} x^{\rho(\lambda)}\right\|+\left\|\left(z_{\beta} x\right)^{\rho(\lambda)}-e_{\alpha}^{a(\lambda)} z_{\beta}^{q(\lambda)} x^{p(\lambda)}\right\|+\left\|e_{\alpha}^{q(\lambda)} z_{\beta}^{z(\lambda)} x^{\rho(\lambda)}-e_{\alpha}^{n(\lambda)} x^{\rho(\lambda)}\right\| \leqq$ $\left\|x^{\rho(\lambda)}-z_{\beta}^{a(\lambda)} x^{\rho(\lambda)}\right\|+\left\|z_{\beta}-e_{\alpha} z_{\beta}\right\| \cdot\left\|x^{\rho(\lambda)}\right\|+\left\|e_{\alpha}\right\| \cdot\left\|z_{\beta}^{\tau(\lambda)} x^{\rho(\lambda)}-x^{\rho(\lambda)}\right\|$ and for any $\varepsilon>0$ there exists α_{0} such that $\left\|x^{\beta(\lambda)}-e_{\alpha}^{\alpha(\lambda)} x^{\varphi(\alpha)}\right\|<\varepsilon$ for $\alpha>\alpha_{0}$ or $\pi_{\lambda}\left(\left(e_{\alpha} x\right) * e_{\alpha} x\right) \xrightarrow{c} \pi_{\lambda}\left(x^{*} x\right)$. Therefore $\pi_{\lambda}(\cdot)(\lambda \bar{\varepsilon} N)$ are semi-traces of \mathscr{N}^{2}. For and $x, y \varepsilon$ थी and $s \varepsilon G_{0} \pi_{\lambda}\left(x^{s} y^{s}\right)=\left(y^{s p(\lambda)}, x^{* s p(\lambda)}\right)=\left(U_{s}(\lambda) y^{p(\lambda)}, U_{s}(\lambda) x^{* \&(\lambda)}\right)$ $=\left(y^{\rho^{(\lambda)}}, x^{* \phi(\lambda)}\right)=\pi_{\lambda}(x y)$. By Lem. $2 \pi_{\lambda}(\cdot), \lambda \bar{\varepsilon} N$, are G-stationary and we have ix).

For any $x \varepsilon \mathscr{U}^{\mathscr{A}}$ taking y_{x} in $\mathscr{A}_{0}, \pi_{\lambda}\left(x^{s}\right)=\pi_{\lambda}\left(x^{s} y_{x}^{s}\right)=\pi_{\lambda}\left(x y_{x}\right)=\pi_{\lambda}(x)$ for any $s \varepsilon G$. Putting $U_{s}^{\prime}(\lambda) x^{\ominus(\lambda)}=x^{s(\lambda)}$ for all $x \varepsilon \mathfrak{N}, U_{s}^{\prime}(\lambda)$ has uniquely unitary extension $U_{s}(\lambda)$ which defines a dual unitary representation of G containing the dual ones of G_{0}.

These representations $\left\{x^{a(\lambda)}, x^{b(\lambda)}, j_{\lambda}, \mathfrak{F}_{\lambda}\right\}$ of \mathfrak{A} and $\left\{U_{s}(\lambda), \mathfrak{g}_{\lambda}\right\}$ of G are corresponding to the stationary semi-traces $\pi_{\lambda}(\lambda \bar{\varepsilon} N)$. Since $W_{0^{(\lambda)}}=\left\{x^{a(\lambda)}, y^{y^{(\lambda)}}, U_{s}(\lambda) ; x, y \varepsilon \mathfrak{\{}, s \varepsilon G_{0}\right\}, \lambda \bar{\varepsilon} N$, are irreducible on \mathfrak{g}_{λ}, $W_{0}^{(\lambda) \prime}=\left(W^{a(\lambda)} \cup W^{(\lambda \lambda)} \smile W_{G_{0}}(\lambda)\right)^{\prime}=\left\{\alpha I_{\lambda}\right\}=W^{0(\lambda)} \backsim W^{a(\lambda)} \cap W_{G}(\lambda)^{\prime} . \quad$ Therefore $\pi_{\lambda}(\cdot), \lambda \varepsilon N$, are G-ergodic semi-traces.

For any $x \varepsilon \mathfrak{A}$ taking $y_{x} \varepsilon \mathfrak{H}_{0}, \tau(x)=\tau\left(x y_{x}\right)=\left(x^{\ominus}, y_{x}^{* \rho}\right)=\int\left(x^{\ominus(\lambda)}, y_{x}^{* \rho(\lambda)}\right)$ $d \sigma(\lambda)=\int\left(x_{x}^{p(\lambda)}, y_{x}^{* \rho(\lambda)}\right) d \sigma(\lambda)=\int \pi_{\lambda}\left(x y_{x}\right) d \sigma(\lambda)=\int \pi_{\lambda}(x) d \sigma(\lambda) .{ }^{3)}$

Remark. A semi-trace $\tau(\cdot)$ on a D^{*}-algebra \mathfrak{N} is called pure, if π is not positively linear combination of any linearly independent semi-traces. Then π is pure if and only if $W^{a} \cap W^{b}=\{\lambda I\}$ where W^{a} and W^{b} are W^{*}-algebras generated by $\left\{x^{a}\right\}$ and $\left\{x^{b}\right\}$ in the corresponding two-sided representation $\left\{x^{a}, x^{b}, j, \mathfrak{y}\right\}$. (Cf. Prop. 2 of [3].) The Theorem 4 in the previous paper [3] follows as a special case of Th. in this paper, i.e. the case of the motion G containing only the identity automorphism: for any semi-trace τ of \mathfrak{U} there exists a system of pure semi-traces π_{λ} such that $\tau(x)=\int \pi_{\lambda}(x) d \sigma(\lambda)$ for all $x \varepsilon$ d where $\sigma(\lambda)$ is similar with Th. (The proof of Th. 4 in the paper [3] has been remained as incomplete on choosing the $\sigma(\lambda)$-null set N such that π_{λ} are semi-traces for $\lambda \bar{\varepsilon} N$, cf. foot-note 11) of [3].)

References

[1] W. Ambrose: The L_{2}-system of unimodular group. I, Trans. Amer. Math. Soc., 65, 26-48 (1949).
[2] J. von Neumann: On rings of operators. Reduction theory, Ann. Math., 50, 401-485 (1949).
[3] H. Umegaki: Decomposition theorems of operator algebra and their applications, Jap. Journ. Math., 22, 27-50 (1952).
3) Let $\pi_{0}(\cdot)$ be arbitrary but fixed G-ergodic semi-trace. If we put $\pi_{\lambda}(x)=\pi_{0}(x)$ for all $\lambda \varepsilon N$ and $x \varepsilon\left\{, \pi_{\lambda}(x)\right.$ are determined for all $\lambda \varepsilon R$ and G-ergodic. Since N is $\sigma(\lambda)$-null set, the $\sigma(\lambda)$-integration of $\pi_{\lambda}(x)(x \varepsilon \mathfrak{A})$ over R is $\tau(x)$.

