71. Les Eléments Primitifs (L'énumération transfinie. II)

Par Motokiti Kondô

Université Métropolitaine, Tokyo (Comm. by Z. SUETUNA, M.J.A., May 13, 1954)

Cette note est une continuation d'une¹⁾ de mes notes et son but est de considérer la structure des ensembles quasi-clairsemés.

- 1. Pour un ensemble E quasi-clairsemé dont les éléments sont les nombres rationnels, il existe un nombre ordinal ξ tel que $\delta^{(\xi)}(E) = 0$. Nous appelons le nombre minimal parmi tels nombres l'ordre E et nous le désignons par $\operatorname{Ord}(E)$. Nous avons alors sans peine
 - (1.1) $\operatorname{Ord}((p)+E) \leq \operatorname{Ord}(E)+1$ pour tout point p de L,
 - (1.2) $\operatorname{Ord}((p,q)E) \leq \operatorname{Ord}(E)$ pour tout intervalle (p,q) ouvert de L.

Encore, nous posons pour un point p de L

$$\operatorname{Ord}(p,E) = \begin{cases} \operatorname{bor.\,inf.\,}(\operatorname{Ord\,}((q,r)E + (p)); \, q$$

et nous l'appelons l'ordre de E en p. Nous avons alors sans peine

- (1.3) Ord (E) = bor. sup. $(Ord(p, E); p \in E)$,
- $(1.4) \quad \operatorname{Ord}(p, E) \leq \operatorname{Ord}(E) + 1,$
- (1.5) si p est fini, Ord(p, E) est isolé.
- 2. Et ant donnés un ensemble E quasi-clairsemé et un nombre α ordinal, nous posons

$$F_{\alpha} = \operatorname{Ens}(p; \operatorname{Ord}(p, E) \geq \alpha)$$

et nous l'appelons la frontière de l'ordre α de E. D'après la définition, nous avons

- (2.1) F_a sont fermés dans L,
- (2.2) $F_0 = F_1 = L$, et $F_a(a \ge 2)$ sont non-denses,
- (2.3) $\alpha < \beta$ implique $F_{\alpha} \supseteq F_{\beta}$,
- (2.4) $\alpha > \operatorname{Ord}(E) + 1$ implique $F_{\alpha} = 0$,
- (2.5) $\delta^{(a)}(E) \subseteq F_a$,
- (2.6) si α est limité, nous avons $F_{\alpha} = F_{\alpha+1}$.
- 3. Nous appelons $F=F_{\eta+1}$, où $\eta=\mathrm{Ord}\,(E)$, la frontière complète

¹⁾ M. Kondô: Les éléments quasi-clairsemés (L'énumération transfinie. I). Proc. Japan Acad., **30**, 66 (1954).

de E. Il est fermé et non-dense dans L, si E est non-vide. Or, nous avons la

Proposition 1. Si nous avons F=0, nous avons

- (3.1) $(p,q)\delta^{(\eta_0)}(E)$ est fini pour tout intervalle (p,q) ouvert et fini, ou bien
- (3.2) $\delta^{(\eta)}((p,q)E)=0$ pour tout intervalle (p,q) ouvert et fini, suivant que $\eta = Ord(E)$ est isolé et $\eta = \eta_0 + 1$ ou bien η est limité, et donc, la

Proposition 2. Si nous avons F=0 et E est borné, η est isolé et $\delta^{(\eta_0)}(E)$ est fini.

Or, dans ce cas, nous pouvons distinguer les cas suivants,

- (3.3) Ord $(-\infty, E) = \eta$, Ord $(+\infty, E) = \eta$,
- $\begin{array}{ll} \text{(3.4)} & \text{Ord} (-\infty, E) = \eta, & \text{Ord} (+\infty, E) < \eta, \\ \text{(3.5)} & \text{Ord} (-\infty, E) < \eta, & \text{Ord} (+\infty, E) = \eta, \\ \text{(3.6)} & \text{Ord} (-\infty, E) < \eta, & \text{Ord} (+\infty, E) < \eta, \end{array}$

et si E est non-vide, nous appelons E son élément primitif ou bien quasi-primitif d'ordre η , suivant qu'il appartient au cas (3.3)-(3.5)ou bien (3.6).

4. Puis, nous considérons le cas où F est non-vide et nondense dans L. Soit [a, b] un intervalle contigu à F tel que (a, b) $E \neq 0$. Nous avons alors la

Proposition 3. Si (a,b)E contient le point minimal, nous avons $a=-\infty$, et s'il contient le point maximal, nous avons $b=+\infty$. Donc, si a et b sont finis en même temps, il ni contient le point minimal ni celui maximal.

5. Or, nous supposons d'abord que η soit isolé. Si a et b sont finis en même temps, nous posons

$$\alpha = \operatorname{Ord}(a,(a,b)E), \quad \text{et} \quad \beta = \operatorname{Ord}(b,(a,b)E)$$
 (1)

et nous dirons que (a, b)E est du genre (a, β) . Or, nous pouvons distinguer les cas suivants,

- (5.1) $\alpha = \eta + 1$, $\beta = \eta + 1$,
- (5.2) $\alpha = \eta + 1$, $\beta \leq \eta$,
- $\beta = \eta + 1$, (5.3) $\alpha \leq \eta$,
- (5.4) $\alpha \leq \eta$, $\beta \leqq \eta$.

De même, pour le cas où $a=-\infty$ et b est fini (ou bien a est fini et $b=+\infty$), nous définissons α et β par (1). Alors, (α,β) est le genre de (a,b)E et nous pouvons distinguer les cas suivants,

- (5.5) $\alpha=\eta$, $\beta = \eta + 1$ (ou bien $\alpha = \eta + 1$, $\beta = \eta$),
- (5.6) $\alpha=\eta$ $\beta \leq \eta$ (ou bien $\alpha = \eta + 1$, $\beta < \eta$),
- (5.7) $\alpha < \eta$, $\beta = \eta + 1$ (ou bien $\alpha \leq \eta$, $\beta = \eta$),
- (ou bien $\alpha \leq \eta$, (5.8) $\alpha < \eta$, $\beta \leq \eta$ $\beta < n$).

Nous avons alors les

Proposition 4. Pour que (a,b)E appartient au cas(5.1) (ou bien (5.5)) ou (5.2) (ou bien (5.6)) ou (5.3) (ou bien (5.7)) ou (5.4) (ou bien (5.8)), il faut et il suffit que $\delta^{(\gamma_0)}((a,b)E)$, où $\eta = \eta_0 + 1$, soit du type $\omega^* + \omega$ ou ω^* ou ω ou bien il est fini.

Proposition 5. Si (a, b)E appartient au cas (5.4) (ou bien (5.8)), nous avons

$$\delta^{(\eta+1)}((a,b)E)=0.$$

Maintenant, nous appelons (a,b)E qui appartient au cas (5.1) ou (5.2) ou (5.3) ou (5.5) ou (5.6) ou (5.7) un élément primitif d'ordre η de E.

- 6. Puis, nous supposons que η soit limité. Si a et b sont finis en même temps, nous définissons a et β par (1). Alors, (a, β) est le genre de (a, b)E et nous pouvons distinguer les cas suivants,
 - $(6.1) \qquad \alpha = \eta + 1, \qquad \beta = \eta + 1,$
 - $(6.2) \qquad \alpha = \eta + 1, \qquad \beta < \eta,$
 - $(6.3) \alpha < \eta, \beta = \eta + 1,$
 - (6.4) $\alpha < \eta$, $\beta < \eta$.

De même, pour le cas où $a=-\infty$ et b est fini (ou bien a est fini et $b=+\infty$), nous définissons a et β par (1). Alors, (a,β) est le genre de (a,b)E et nous pouvons distinguer les cas suivants,

- (6.5) $a=\eta$, $\beta=\eta+1$ (ou bien $\alpha=\eta+1$, $\beta=\eta$),
- (6.6) $\alpha = \eta$, $\beta < \eta$ (ou bien $\alpha = \eta + 1$, $\beta < \eta$),
- (6.7) $\alpha < \eta$, $\beta = \eta + 1$ (ou bien $\alpha < \eta$, $\beta = \eta$),
- (6.8) $\alpha < \eta$, $\beta < \eta$ (ou bien $\alpha < \eta$, $\beta < \eta$).

Enfin, nous appelons (a,b)E qui appartient au cas (6.1) ou (6.2) ou (6.3) ou (6.5) ou (6.6) ou (6.7) un élément primitif d'ordre η de E.

- 7. Puis, nous considérons le cas où (a,b)E appartient au cas (5.4) ou (5.8) ou (6.4) ou (6.8). Si η est isolé, (a,b)E appartient au cas (5.4) ou bien (5.8), et nous pouvons distinguer les cas,
 - $(7.1) \qquad \operatorname{Ord}((a,b)E) = \eta,$
 - (7.2) $Ord((a, b)E) < \eta$.

Puis, si η est limité, (a,b)E appartient au cas (6.4) ou (6.8), et nous avons (7.2).

Ici, nous appelons (a,b)E qui appartient au cas (7.1) un élément quasi-primitif d'ordre η de E et (a,b)E qui appartient au cas (7.2) un élément imprimitif d'ordre η de E.

- 8. Or, pour chaque point p d'un élément $(a_0, b_0)E$ imprimitif d'ordre η_0 de E, il existe les intervalles $[a_k, b_k](k=0, 1, 2, ..., N)$ et les nombres ordinaux $\eta_k(k=0, 1, 2, ..., N)$ tels qu'on ait
 - $[a_k, b_k] \subseteq [a_{k-1}, b_{k-1}] \qquad (k=1, 2, \ldots N),$
 - $(8.2) \quad p \in [a_N, b_N],$

- (8.3) Ord $((a_{k-1}, b_{k-1})E) = \eta_k$ $(k=1, 2, \ldots N-1),$
- (8.4) Ord $(E) = \eta_0$,
- (8.5) $(a_k, b_k)E$ est un élément imprimitif d'ordre η_k de $(a_{k-1}, b_{k-1})E$,
- (8.6) $(a_N, b_N)E$ est un élément primitif ou bien celui quasiprimitif d'ordre η_N de $(a_{N-1}, b_{N-1})E$.

Ici, nous appelons $(a_N, b_N)E$ un élément primitif ou bien quasiprimitif d'ordre η_N de E.

Alors, d'après les définitions, nous avons le

Théorème. Tout ensemble E quasi-clairsemé et non-vide est une somme d'un nombre fini ou bien dénombrable des éléments $E_n(n=1,2,\ldots)$ primitifs ou bien quasi-primitifs de quelques ordres de E tels qu'on ait $E_iE_j=0$ $(i \neq j)$, et l'ensemble de ces éléments est ordonné suivant l'ordre naturel des points extrêmes de ceux-ci.

9. L'ensemble ordonné, donné dans le théorème précédent et dont les éléments sont $E_n(n=1, 2, ...)$, jouit du rôle important dans notre considération et nous le désignons par $\pi(E)$ ou bien $\pi^{(1)}(E)$.

Or, nous pouvons définir les ensembles ordonnés $\pi^{(a)}(E)$ pour les nombres ordinaux α par l'induction transfinie comme il suit,

- (9.1) les éléments $E_n^{(a)}(n=1,2,\ldots)$ de $\pi^{(a)}(E)$ sont les sousensembles de E, où nous posons $E_n^{(a)}=E_n(n=1,2,\ldots)$,
- (9.2) $E_n^{(a)}E_m^{(a)}=0 \ (n \neq m),$
- (9.3) si nous avons $\beta < \alpha$, chaque $E_m^{(\beta)}$ est contenu dans un de $E_n^{(\alpha)}(n=1,2,\ldots)$,
- (9.4) $E = \sum_{n=1}^{\infty} E_n^{(a)}$,
- (9.5) $\pi^{(a)}(E)$ est ordonné suivant l'ordre naturel des points extrêmes de ceux-ci,
- (9.6) quand $\pi^{(\xi)}(E)(\xi < a)$ sont quasi-clairsemés, il existe $\pi^{(a)}(E)$,
- (9.7) $\pi^{(a+1)}(E)$ est isomorphique à $\pi(\pi^{(a)}(E))$.

Alors, nous pouvons distinguer les cas suivants,

- (9.8) $\pi^{(a)}(E)(\alpha < \Omega)$ sont tous quasi-clairsemés,
- (9.9) il existe un nombre ordinal η tel que $\pi^{(\eta)}(E)$ ne soit pas quasi-clairsemé,

et pour le cas (9.8), il existe un nombre ordinal η tel que $\pi^{(\eta)}(E)$ ne consiste que E. Ici, nous dirons que E est biclairsemé, quand il appartient au cas (9.8). Tout ensemble clairsemé au sens de l'ordre est biclairsemé, mais il existe un ensemble quasi-clairsemé qui n'est pas biclairsemé.