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157. The Divergence of Interpolations. I

By Tetsujiro KAKEHASHI
(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1954)

The convergence of interpolation polynomials to a given function
in the points which satisfy a certain condition has been studied
sufficiently by Walsh and others.

Let f(2) be a function which is single valued and analytic
throughout the interior of the ecircle Cg:|2|=R>0 and which has
singularities on Cr. Let W,(2) be a sequence of polynomials of
respective degrees » such that the sequence of W,(z)/2" converges
to A(z) analytic and non-vanishing exterior to a circle C,: |z2|=R'<R
and uniformly on any closed limited point set exterior to Ca.
Then the sequence of polynomials S,(z; f) of respective degrees n
found by interpolation to f(2) in all the zeros of W,.;(2) converges
to f(2) uniformly on any closed set interior to Ck.

But the divergence of S,(z; f) at every point exterior to C. is
not yet established in general, as far as I know. If we choose a
certain condition of W,(2) which is stronger than the condition
above-mentioned, the divergence at every point exterior to Cr can
be proved. (Cf. T. Kakehashi: On the convergence-region of inter-
polation polynomials, Journal of the Mathematical Society of Japan,
6(1954).)

The purpose of this paper is to study the divergence of S, (2; f)
which interpolate to f(2) with singularities of a certain type on
Cr, in the points which satisfy the condition mentioned formerly.

1. Let o(t) be the function single valued and analytic on the
circle Cr: |t|=R>0, a be a point on Cr and m be a complex
number. If the real part of m is positive, the integral

f o) t—a)y*'dt ; a=Re™
Cr
exists. But if the real part of m is not positive, the above inte-

gral does not exist. For such cases, we define the finite part of
the integral as follows:

(1) P [ p® ¢—ardt= [ wt) ¢—ar

where Y(t) is the function single valued and analytic defined by

(2) p0=3 | 2D t—ap+E—ayi
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and p is the largest positive integer such that the real part of
m-+7p is zero or negative.

Now we can consider the following.

Lemma 1. Let o(t) be the function single valued and analytic
on and between the two circles Cr and Cr : |t|=R'< R, and a= Re*.
Then

(8) Pf. fc (@) (E—ay™ dt = fc () E—a)y™ dt.

From the definition of Pf. f . p(t) (t—a)"'dt, we can easily
R

verify the following equations.
Pf. f , P b=y di= f ¥ =y dt
— fo (t) (- aydi= j; p®) ¢—aydt.

Thus the lemma has been proved.

This lemma enables us to consider the integral on a contour on
which the integrand has a certain type of singularities.

Let @(t) be the function single valued and analytic on the circle
Cr: |t]|=R>0 and m be a complex number not equal to a positive
integer. We define Y,,(p; @) by

(4) Yolp; a):F—(—zj-‘;%@ pt. [ , P0) (=0t : a=Re"

where ({—a)™ take the principal value if m is not zero or nega-
tive integer, and Pf. can be omitted if the real part of m is
positive. In the case when m is a positive integer, we define

Y.(@; @) by

(5) Vil =51 [ plt) Lntt—a dt ; a=Re"
m=1,2,...,

where

L(t)=Log t

Ly(t)=t (Log t—1)

1
(6) Ly(t)= (Logt 1_5)
1. 1
Lyt)= ( k‘ ol <L0gt 1— 2 - 7,6_:1_)’

and Log t is the principal value of log &.
The relation

(7) Y (9s @)=Yy (p; a>=%m¢; a)
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is clear from the definition of Y, by partial integrations. And
the operation Y,, is linear in the sense that, for any two functions
@, and @, analytic and single valued on Cg,

Y. (¢1 + goz) =Y, (901) +Y, (¢2)

and for @,; n=1,2,...analytic on Cg if ¢, converges to zero
uniformly on Cr as n tends to infinity,

UM,y Yo (90)=0.
These relations can be verified from the definitions of Y, and ¢,.

, we have for any

For 2z interior to Ckr, if we put <p(t)=t 1

complex number m

Ym(%; a>:[‘(1—m) @—a)"" ; m*l, 2,...,

(8)

Y,,,(t 1 ; a>=L,,.(z—a) ;o m=1,2,...,

where L, are defined by (6).
Hereafter we denote Ym(t—l—; a) by ¥.(z; &) for simplicity.
—2

Let o(t) be a function single valued and analytic on and within
the circle Cr. Then Y,,.(é/l% ; a) represents the function ¢(z) y,.(z; @)

which is analytic and single valued within C. but not analytic on
Cr, that is, which has a pole or branch point at z—=a.

2. In this paragraph, we consider the divergence properties of
the power series of a function which is analytic interior to the
circle Cr and which has singularities of Y,, type on Cx.

At first we consider the following.

Lemma 2. Let ¢(t) be a function single valued and analytic on
the circle Cr; |t|=R>0. Then

(9) lim,,, "™ Y, (E"p(t) ; @)=(—1)""'a™p (a).

If m is not a positive integer, we have

Y.l a)= F(*;—;:m) Pf. /; Tt —a)™\dt
®

T
A=) [ aneir T(L—m) [ dr-t :
=27 penp_ gymtgp— Bt gyt
2 fck,w,(@) (n—1)! [t ](
=L d—m)

n—1)! (m—1)(m—2) - (m—n+1) (—a)™™



744 T. KAKEHASHI [Vol. 30,

:r(l-m><:1n+1><;f?2%f?27'&:<1)—m+”+1><~1)'"—'(—a>m~"

~( _l)m—l n—m am—n’
by the well-known formula
1-2..-(n—1)
2z+1)---(+n—1)
where ~ signifies that the ratio of both sides tends to 1 as n—>o.
If m is a positive integer, we have, for n greater than m,

Yt o= o[ da*! Lu(t—a) |

1Mo =I'(?),

(n—1)! Ldg»1
B 1 dr—m-1 »
= (=1 [dt”""“ (t=a) J
_ (_l)n—m—l( _m—l)! m—mn
- (n—ﬁ)! (—a)

~( — l)m—l n"™qm ",
Thus the validity of (9) can be verified when @(f)=1, that is
for any complex number, we have
10) UM on™a™ Yo (£ a)=(—1)""ta™.
We are now in a position to prove the lemma for ¢(f) in

general. At first we consider the case when the real part of m is
negative. In this case, ¢(f) can be expanded to

wt)=3 D @-ap+a—ary)

where (¢) is a function single valued and analytic on Cr and p is
the largest positive integer such that the real part of m+p is zero
or negative. And we have

n"a"Y,, E"p(t) ; a)=n"a"p(@)Y,(t™"; a)

P p® I'(1—m)
" »*(a)
2/c=1 k! Irl—m—k)
T Yt 4(0); @)
and if m-+p is zero, the last term must be replaced by

m ”I‘(l_m) —mn, d
mnar LT fg nt W (E)dt.

@Y, 4875 @)

+n"a"

The first term of the right side members tends to (—1)" 'a™p(a)
and others tend to zeros as » tends to infinity, by (10) and the
boundedness of "Y,u.p. (" ¥(£); @). The relation (9) has been proved
in this case.
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In the case when the real part of m is zero or positive, putting
P(O)=p(a)+ P (@)t —a)+ (¢ —a) (),
we have
WY (b p(8); @) =10 () Yol 1)
+n"a"p (@) Y6 —a); a) +n @Y, (E"(E— a) ¥ (@) ; a).

The first term of the right side members tends to (—1)"'a™p(a)
and the second tends to zero as n—>c by (10). And we can verify
that the last term tends to zero as n—c by partial integrations
as the (p+1)th derivative of Y (¢) t—a)™** or y(t) (t—a)® L,(t—a) is
continuous, where p is the largest positive integer not greater than
the real part of m.

Now the lemma has been established.

Let @(2) be a function single valued and analytic on and within
the circle Cr. Partial sums of the power series of the funection
@(2)Yn(2; @) is represented by

—y (=2 () >
(11) Pn(zr ?ym> Ym( g+t iz s @
n=0,1,2,... .
P.(z; pyn) are polynomials of respective degrees n, and (11) is valid
even for 2z exterior to Cr.

Theorem 1. Let ¢(2) be a function which is single valued and
analytic on and within the circle Cr: |2|=R>0 and which does not
vanish at z=a. Let P, z; pyYn) be partial sums of the power series
of p(R)Y.(z; a). Then

(12) Uittt (-2 )PP (25 ) = A0

Sor z exterior to Cr, where A s a complex number non-vanishing
and dependent on a, z and . Accordingly, P.(2; ¢y,) diverges at
every point exterior to Cp.

The linearity of Y,, enables us the following calculations. That
is, for a point z exterior to Cp,

lim,,mn’”<%>nPn(z 3 PYnm)

:l’l:mmm{ Y. [nm(%>nt_¢jft_z); a:} _nmanym[t%nu)%% : a]}

=M pyeo — M"Y, (€ ”“)%@ ; a) .
—2z

The function ti(% being single valued and analytic on and

within the circle Cr and not vanishing at ¢=a, we can verify the
relation (12) by lemma 2. Thus the theorem has been established.



