Harmonic Measures and Capacity of Sets of the 7. Ideal Boundary. II

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1955)

Let R be a positive boundary Riemann surface and let D^{1} be a non compact domain determining a subset B_{D} of the ideal boundary. Put $D_n = (R - R_n) \cap D$. Let $U_{n,n+i}(z)$ be a harmonic function in R_{n+i} - $R_0 - D_n$ such that $U_{n,n+i}(z) = 0$, on ∂R_0 , $U_{n,n+i}(z) = 1$ on ∂D_n and $\frac{\partial U_{n,n+i}}{\partial n} = 0$ Then $\lim \lim U_{n,n+i}(z) = \lim U_n(z) = U(z)$, where U(z)on $\partial R_{n+i} - D_n$. is the equilibrium potential of B_D . We have proved that

$$\int_{\partial E_0} \frac{\partial U_n}{\partial n} ds = \int_{\partial G_{\mathfrak{g}}} \frac{\partial U_n}{\partial n} ds \qquad (1)$$

for every G_{ε} except for at most one ε , where G_{ε} is the domain in which $U_n(z) > 1 - \varepsilon$. Let $U'_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-G_{\varepsilon}-R_0$ such that $U'_{n,n+i}(z)=0$ on ∂R_0 , $U'_{n,n+i}(z)=1-\varepsilon$ on $\partial G_{\varepsilon} \cap R_{n+i} ext{ and } rac{\partial U'_{n,n+i}}{\partial n} = 0 ext{ on } \partial R_{n+i} - G_{\varepsilon}. ext{ Then } \lim_{i \to \infty} U'_{n,n+i}(z) = U_n(z).$ Since every $U'_{n,n+i}(z) = 1 - \varepsilon$ on ∂G_{ε} , $\frac{\partial U'_{n,n+i}}{\partial n} \rightarrow \frac{\partial U_n}{\partial n} : \frac{\partial U'_{n,n+i}}{\partial n} \leq 0$ on every point of $\partial G_{\varepsilon} \cap R_{n+i}$. Hence by (1) and $\lim_{i \to \infty} \int_{\partial R_i} \frac{\partial U_{n,n+i}}{\partial n} ds =$ $\int_{\partial R_0} \frac{\partial U_n}{\partial n} ds$, we easily that

$$\lim_{i=\infty}\int_{\partial G_{\mathfrak{s}}}\varphi_{i}\frac{\partial U'_{n,n+i}}{\partial n}ds = \int_{\partial G_{\mathfrak{s}}}\varphi\frac{\partial U_{n}}{\partial n}ds \qquad (2)$$

on ∂G_{ε} for every bounded sequence of continuous functions $\varphi_i \rightarrow \varphi$: $|\varphi_i| \leq M < \infty$.

We denote by G_n the domain in which $U_n(z) > 1 - \varepsilon_n$, where $\varepsilon_1 > \varepsilon_2 > \cdots$; lim $\varepsilon_n = 0$ and every ε_n satisfies the condition (1).

Let $U''_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-R_0-G_n$ such that $U_{n,n+i}''(z) = U(z) \text{ on } \partial G_{\varepsilon} + \partial R_0 \text{ and } \frac{\partial U_{n,n+i}''}{\partial n} = 0 \text{ on } \partial R_{n+i} - G_n.$ Since $U_n(z)$ is the function such that $U_n(z)=1-\varepsilon_n$ and $U_n(z)$ has the minimum Dirichlet integral over $R - R_0 - G_n$, and since $\lim U_n(z) = U(z)$ on ∂G_n , then by (2) we can prove as in the previous $paper^{2}$ TT!!

$$\lim_{n \to \infty} \lim_{i \to \infty} U_{n,n+i}^{::}(z) \equiv U(z).$$

¹⁾ See, the definition of non compact domain. "Harmonic measures and capacity. I". 2) See (1).

Hence we have the following

Lemma.

$$U(z) = U_{ex}(z),$$

where the extremisation is with respect to the sequence $\{G_n\}$. Now we apply Green's formula to $U'_{n,n+i}(z)$ and $U''_{n,n+i}(z)$. Then

$$\int U'_{n,n+i}(z) \frac{\partial U''_{n,n+i}}{\partial n} ds = \int U''_{n,n+i}(z) \frac{\partial U'_{n,n+i}}{\partial n} ds \quad \text{and} \\ \int U'_{n,n+i}(z) \frac{\partial U'_{n,n+i}}{\partial n} ds = \int U''_{n,n+i}(z) \frac{\partial U'_{n,n+i}}{\partial n} ds. \quad \text{and} \\ (1-\varepsilon_n) \int_{\partial R_0} \frac{\partial U''_{n,n+i}}{\partial n} ds = \int_{\partial G_n \cap R_{n+i}} U''_{n,n+i}(z) \frac{\partial U'}{\partial n} ds.$$

Let $i \rightarrow \infty$. Then by (1) and (2) we have

$$(1-\varepsilon_n)\int_{\partial R_0}\frac{\partial U}{\partial n}\,ds = \int_{\partial G_n}U(z)\frac{\partial U_n}{\partial n}\,ds.$$
 (3)

On the other hand, since $\lim_{n\to\infty} \int_{\partial R_0} \frac{\partial U_n}{\partial n} ds = \operatorname{Cap}(B_D) = \int_{\partial R_0} \frac{\partial U}{\partial n} ds$ and $(1-\varepsilon_n) \int_{\partial R_0} \frac{\partial U_n}{\partial n} ds = \int_{\partial R_0} \frac{\partial U_n}{\partial n} ds$, we have by (3)

$$\lim_{n \to \infty} \int_{\partial R_0} \frac{\partial u}{\partial n} ds = \int_{\partial G_n} U_n(z) \frac{\partial u}{\partial n} ds, \text{ we have by (3)}$$

$$\lim_{n \to \infty} \int_{\partial G_n} (U_n(z) - U(z)) \frac{\partial U_n}{\partial n} ds = \lim_{n \to \infty} (1 - \varepsilon_n) \int_{\partial G_0} \left(\frac{\partial U_n}{\partial n} - \frac{\partial U}{\partial n} \right) ds = 0. \quad (4)$$

Since $\lim_{i \to \infty} D_{R_{n+i}-R_0-G_n}(U'_{n,n+i}(z)) = D_{R-R_0-G_n}(U_n(z))$ and $\lim_{i \to \infty} D_{R_{n+i}-R_0-G_n}(U''_{n,n+i}(z)) = D_{R-R_0-G_n}(U(z)),$ we have

$$D(U_n(z) - U(z), U_n(z)) = \lim_{i \to \infty} D(U'_{n,n+i}(z) - U''_{n,n+i}(z), U_{n,n+i}(z)) = \int_{\partial G_n} (U_n(z) - U(z)) \frac{\partial U_n}{\partial n} ds.$$

Hence by (4) $\lim_{n \to \infty} D_{R-R_0-G_n}(U_n(z) - U(z), U_n(z)) = 0. \text{ Thus}$ $D_{R-R_0-G_n}(U_n(z) - U(z)) = D_{R-R_0-G_n}(U(z)) - D(U_n(z)), \text{ whence}$ $\lim_{s \to \infty} D_{R-R_0-G_n}(U(z)) \ge \lim_{n \to \infty} D_{R-R_0-G_n}(U_n(z)). \tag{5}$ $\text{Since } D_{R-R_0}(U_n(z)) = D_{R-R_0-G_n}(U_n(z)) - D_{R-R_0-G_n}(U_n(z)) = \varepsilon_n \int \frac{\partial U_n}{\partial m} ds,$

$$\lim_{n \to \infty} D_{G_n - D_n} (U_n(z)) = D_{R - R_0 - D_n} (U_n(z)) - D_{R - R_0 - G_n} (U_n(z)) = \varepsilon_n \int_{\partial R_0} \frac{\partial n}{\partial n} ds,$$

$$\lim_{n \to \infty} D_{G_n - D_n} (U_n(z)) = 0.$$
(6)

From the Fatou's Lemma, we have

 $\begin{array}{l} D_{R-R_{0}}(U(z)) = D_{R-R_{0}}(\lim_{n \to \infty} U_{n}(z)) \leq \lim_{n \to \infty} (D_{R-R_{0}-D_{n}}(U_{n}(z)) = \operatorname{Cap} (B_{D}).\\ \text{Therefore by (5) and (6), we have } \lim_{n \to \infty} D_{G_{n}-D_{n}}(U(z)) = 0. \\ \lim_{n \to \infty} D_{R-G_{n}-R_{0}}(U_{n}(z)) = \lim_{n \to \infty} D_{R-G_{n}-R_{0}}(U(z)), \\ \lim_{n \to \infty} D_{G_{n}-D_{n}}(U_{n}(z)) = \lim_{n \to \infty} D_{R-G_{n}-R_{0}}(U(z)), \\ \lim_{n \to \infty} D_{G_{n}-D_{n}}(U_{n}(z)) = \lim_{n \to \infty} D_{G_{n}-D_{n}}(U(z)) = 0 \end{array}$

$$\lim_{n \to \infty} D_{G_n - D_n}(U_n(z) - U(z), U_n(z)) = 0.$$

Therefore

[Vol. 31,

No. 1] Harmonic Measures and Capacity of Sets of the Ideal Boundary. II

$$\lim_{n \to \infty} D_{R-R_0}(U_n(z) - U(z)) = \lim_{n \to \infty} (D_{R-G_n}(U_n(z) - U(z)) + D_{G_n-D_n}(U_n(z) - U(z)) = 0.$$

It follows that $U_n(z)$ converges to U(z) in norm. Then we have the following

Proposition. Cap
$$(B_D) = \int_{\partial R_0} \frac{\partial U}{\partial n} ds = D_{R-R_0}(U(z)).$$

The extremisation is defined with respect to the sequence $\{G_n\}$, we can also the above operation with respect to $\{D_n\}$.

Every $U_m(z) (m=n, n+1,...) (U(z)=\lim U_n(z))$ is the harmonic function which has the minimum Dirichlet integral over $R-R_0-D_n$ among all functions which have their boundary value $U_m(z)$ on ∂D_n . Let h(z) be a harmonic function in $R-R_0-D_n$ such that h(z)=0 on $\partial D_n + \partial R_0$ and $D(h(z)) \leq M < \infty$. Then

$$D\left(U_m(z)\pm \varepsilon h(z)\right) \leq D\left(U_m(z)\right)\pm 2\varepsilon D\left(U_m(z), h(z)\right) + \varepsilon^2 D\left(h(z)\right),$$
 whence

$$D_{R-R_0-D_n}(h(z), U_m(z))=0.$$

Let $\tilde{U}_n(z)$ be a harmonic function in $R-R_0-D_n$ such that $\tilde{U}_n(z)=U(z)$ on $\partial D_n+\partial R_0$ and $\hat{U}_n(z)$ has the minimum Dirichlet integral over $R-R_0-D_n$.

Then $D_{R-D_n-R_0}(\widetilde{U}_n(z)) \leq D_{\overline{R}-R_0}(U(z))$ and $D_{R-R_0-D_n}(\widetilde{U}_n(z), h(z)) = 0$. Since $\lim_{n \to \infty} U_n(z) = U(z)$ on ∂D_n and $\lim_{n \to \infty} D(U_n(z) - U(z)) = 0$,

we can assume $h(z) = \widetilde{U}_n(z) - U(z)$. Then we have

 $\lim_{m \to \infty} \left[D(U(z) - U_m(z), h(z)) \right]^2 \leq \lim_{m \to \infty} \left[D(h(z)) D(U(z) - U_m(z)) \right] = 0.$

Hence $D_{R-R_0-D_n}(U(z), h(z)) = 0$, therefore

 $0 = \underbrace{D}_{R-R_0-D_n}(U(z) - \widetilde{U}_n(z), h(z)) = \underbrace{D}_{R-R_0-D_n}(U(z) - \widetilde{U}_n(z)), \text{ whence } U(z) = \widetilde{U}_n(z).$

Thus we have the next

Theorem 4.

$$U(z) = U_{ex}(z),$$

where the extremisation is defined with respect to the sequence $\{D_n\}$.

Corollary 1. If $U(z) \equiv 0$, $\overline{\lim_{z \in D}} U(z) = 1$.

Proof. Let $\hat{U}_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-R_0-D_n$ such that $\hat{U}_{n,n+i}(z)=U(z)$ on $\partial D_n \cap R_{n+i}$, $\hat{U}_{n,n+i}(z)=0$ on ∂R_0 and $\frac{\partial \hat{U}_{n,n+i}}{\partial n}=0$ on $\partial R_{n+i}-D_n$. Then $\tilde{U}_n(z)=\lim_{i=\infty} \hat{U}_{n,n+i}(z)$. Assume $U(z)\leq K<1$ on D. Then $\hat{U}_{n,n+i}(z)\leq KU_{n,n+i}(z)$. Hence $U(z)=\lim_{i=\infty} \hat{U}_n(z)=\lim_{i=\infty} \hat{U}_n(z)\leq K$ lim lim $U_{n,n+i}(z)$.

$$U(z) = \lim_{n \to \infty} \lim_{i \to \infty} U_{n,n+i}(z) \leq K \lim_{n \to \infty} \lim_{i \to \infty} U_{n,n+i}(z) = K U(z).$$

27

This is absurd. Hence $\lim U(z)=1$.

Corollary 2. If $U(z) \equiv 0$, then $\overline{\lim} U(z) = 1$ in B_D except possibly for a subset of B_D of outer capacity zero.

We denote by $J_{\lambda}(\lambda < 1)$ the domain where $U(z) < \lambda$. Put $D \cap J_{\lambda} = H_{\lambda}$. Then H_{λ} is a non compact domain determining a subset I_{λ} of B_D . Let $U_I(z)$ be the equilibrium potential of I_{λ} . Then it is clear that $U_I(z) \leq U(z)$. Hence $\lim_{z \in H_{\lambda}} U_I(z) \leq \lambda$. Therefore by the above corollary $U_I(z) \equiv 0$.

On the Behaviour of the Green's Function in the Neighbourhood of the Ideal Boundary

Let $G(z, z_0)$ be the Green's function of R and let M be sufficiently large number. Then $G_M = \mathcal{E}_{\mathfrak{s}}\{G(z, z) > M\}$ is compact. We can suppose $R_0 = G_M$. If we consider $R - R_0$ as a non compact domain D defining all ideal boundary of R. Then it is clear that

$$1 - \frac{G(z, z_0)}{M} = U(z) = \omega'(z),$$

where U(z) and $\omega'(z)$ is the equilibrium potential and harmonic measure. Then by the corollary U(z)=1 except possibly a subset of ideal boundary of capacity zero. Let $D_{\lambda} = \mathcal{E}_{z}\{U(z) > \lambda\}$ be a non compact domain determining B_{D} . Let $U_{\lambda}(z)$, $\omega'_{\lambda}(z)$ and $\omega_{\lambda}(z)$ be equilibrium potential of B_{D} and harmonic measures. Then $0=U_{\lambda}(z)=\omega'_{\lambda}(z)$ and $\omega_{\lambda}(z)=0$ is equivalent to $\omega(z)=0$. Thus we have the next

Theorem 5. Cap $(B_D)=0=\omega_\lambda(z)$.

We can construct an open Riemann surface \hat{D}_{λ} by the process of symmetrization with respect to ∂D_{λ} . Then we have the following

Corollary. $D_{\lambda} + \hat{D}_{\lambda}$ is a null-boundary Riemann surface. Proof. Let $\omega_n(z)$ be the harmonic measure of $(\partial R_n \cap D_{\lambda}) + (\partial R_n \cap D_{\lambda})$ with respect to $((D_{\lambda} \cap R_n) - R_0) + ((D_{\lambda} \cap R_n) - R_0)$. Then $\omega_n(z) = 0$ on $\partial R_0 + \partial \hat{R_0}$, $\omega_n(z) = 1$ on $(\partial R_n \cap D_{\lambda})$ and $\frac{\partial \omega_n}{\partial n} = 0$ on ∂D_{λ} . On the other hand let $U_{n,n+i}(z)$ be a function in $(D_{\lambda} \cap R_n) - R_0$ such that $U_{n,n+i}(z) = 0$ on ∂R_0 , $U_{n,n+i}(z) = 1$ on $\partial D_{\lambda} \cap (R - R_n)$ and $\frac{\partial U_{n,n+i}}{\partial n} = 0$ on $\partial R_{n+i} - D_{\lambda}$. Then it is clear that $D_{(\omega_n(z))} \leq D_{R_{n+i}-R_0} (U_{n,n+i}(z))$. Hence, since B_D is a set of capacity zero, we have

$$D_{D_{\lambda}\cap R-R_{0}}(\lim_{\sigma_{\lambda}\cap R-R_{0}}\omega_{n}(z)) \leq D_{R-R_{0}}(\lim_{n \neq \infty}\lim_{i \neq \infty}U_{n,n+i}(z)) = 0.$$

Thus $D_{\lambda} + D_{\lambda}^{\hat{}}$ is a null-boundary Riemann surface. Corollary. Let $G(z, z_0)$ be the Green's function of R and let h(z)

29

be its conjugate. Put $W(z)=e^{-G(z,z_0)-i\hbar(z)}=re^{i\theta}$. We cut R along the trajectories $(\hbar(z)=const)$ so that W(z) may be single valued. Then R is mapped onto the domain |W(z)|<1 with enumerably infinite number of radial slits. Then $z=z^{-1}(W)$ can be continued analytically along radii $re^{i\theta}$ from W=0 to |W|=1 except possibly a set of θ of angular measure zero.

In fact, if it were not so, there exists a set I_{λ} of the ideal boundary such that I_{λ} is defined by a non compact domain $D_{\lambda} = \xi_{z}$ $\{G(z, z) > \lambda\}$ and the length of the image of C enclosing I_{λ} is larger than l(>0). Since Cap $(I_{\lambda})=0$, there exists a harmonic function $U_{n}(z)$ in $R-(R_{n}\cap D_{\lambda})-R_{0}$ such that $\int_{C_{\mu}} \frac{\partial U_{n}}{\partial n} ds = 2\pi$ and $U_{n}(z) = M_{n}$ $(\lim_{n\to\infty} M_{n} = \infty)$ on $\partial R_{n} \cap D$, where $C\mu = \xi_{z} \{U_{n}(z) = \mu\}$. Thus by usual method we can deduce a contradiction. Analogously we have

Corollary. If the analytic function f(z) satisfies $D_R(f(z)) < \infty$. Then the length of the image of trajectories mapped by f(z) is finite for almost θ .

Applications to the Subregion on an Abstract Riemann Surface

Let D be a non compact domain in R. If any bounded (Dirichlet Bounded) harmonic function vanishing on ∂D or having vanishing normal derivative on ∂D must reduce to a constant, we denote by S_{0B} , S_{0D} , S_{0NB} and S_{0ND} such class of D respectively. In the previous paper,³⁾ we have proved that, if D can be mapped onto a bounded domain then, $S_{0NB} \subseteq S_{0B}$.

Theorem 6. If the genus of D is finite, then $D \in S_{0NB} = S_{0ND}$ is equivalent to that $D + \hat{D}$ is a null-boundary Riemann surface.

Proof. If $D + \hat{D}$ is a null-boundary Riemann surface, it is clear that $D \in S_{0NB}(S_{0ND})$. By assumption, we can suppose $D - R_{n_0}$ is a planer surface. Assume $D + \hat{D}$ is a positive boundary Riemann surface. Then the harmonic measure $\omega(z)$ of the ideal boundary of $(D - R_{n_0}) + (D - R_{n_0})$ is non-constant. Normalize $\omega(z)$ so that $\int_{\partial R_0} \frac{\partial \omega'(z)}{\partial n} = 2\pi$ and let h(z) be its conjugate. Then $e^{\omega'(z)+ih(z)} = W(z)$ maps $D - R_{n_0}$ onto the domain 1 < |W| < K with enumerably infinite number of radial slits which are the images of ∂D such that ∂R_{n_0} is mapped onto |W| = 1 and $(D - R_{n_0})$ is symmetric to $(D - R_{n_0})$ with respect to these slits.

Let D_{λ} ($\lambda < K$) be the domain in which $W(z) < \lambda$. Then D_{λ} determines a set of ideal boundary of capacity zero. Thus we can easily

³⁾ Z. Kuramochi: On covering surfaces, Osaka Math. Jour. (1953).

prove that $\int_{\partial D_{\lambda}} \frac{\partial \omega'}{\partial n} ds = \int_{\partial R_0} \frac{\partial \omega'}{\partial n} ds$, whence the length of the image of

 $\partial D_{\lambda} = 2 \cdot 2\pi \lambda$. Let G be a non compact domain of $(D - R_{n_0}) + (D - R_{n_0})$ lying over 1 < |W| < K and $0 < \arg W < \pi$. Let $U_n(z)$ be a harmonic function in $(D - R_{n_0} - (G \cap D_{\lambda})) (D - R_{n_0} - (G \cap D_{\lambda}))$ such that $U_n(z) = 0$ on $\partial R_{n_0} + \partial \hat{R_{n_0}}$, $U_n(z) = 1$ on $\partial D_{\lambda} \cap G$ and has the minimum integral. On the other hand let $U'_n(z)$ be a harmonic function in the ring $1 \leq |W| < \lambda$ with radial slits above-mentioned such that $U'_n(W) = 1$ on $|W| = \lambda$, $0 < \arg W < \pi$ and $U'_n(W)$ has the minimum Dirichlet integral. Then

$$D_{D-R_{n_0}}(U_n(z)) \geq 2D_{1 < |W| < \lambda}(W) \geq \frac{2\pi}{\log \lambda}.$$

Therefore by theorem

$$D\left(\lim U_n(z)
ight) \!=\! \operatorname{Cap}\left(B_{\scriptscriptstyle D}
ight) \!\geq\! rac{2\pi}{\log K} \!\!>\! 0. \hspace{1.5cm} ext{Hence} \hspace{1.5cm} \lim_n \overline{U}_n(z) \!=\! 1.$$

On the other hand, let $V_n(W)$ be a harmonic function on the ring without radial slits such that $V_n(W)=1$ on $|W|=\lambda$, $0<\arg W<\pi$ and $V_n(W)$ has the minimum Dirichlet integral. Then clearly

$$D\left(U(z)
ight) \, \leqq \, 2D\left(\lim_{n} \, V_n(W)
ight) \! < \! 2D\left(\omega(z)
ight) \! = \! rac{4\pi}{\log K}.$$

Therefore on $D + \hat{D}$, there exists a non-constant bounded and Dirichlet bounded harmonic function, because, if it were not so U(z) must be a multiple of $\omega(z)$.

⁴⁾ Z. Kuramochi: On the behaviour of analytic functions on abstract Riemann surfaces to appear in Ann. Sci. Acad. Fenn.