28. On the Riesz Logarithmic Summability of the Conjugate Derived Fourier Series. I

By Masakiti KINUKAWA
Mathematical Institute, Tokyo Metropolitan University, Tokyo

(Comm. by Z. Suetuna, m.J.A., March 12, 1955)

1. Let $f(x)$ be an integrable function with period 2π and its Fourier series be

$$
\begin{equation*}
f(x) \sim a_{0} / 2+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{1.1}
\end{equation*}
$$

We call the series

$$
\begin{align*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right) & \equiv \sum_{n=1}^{\infty} B_{n}(t), \tag{1.2}\\
\sum_{n=1}^{\infty} n\left(b_{n} \cos n x-a_{n} \sin n x\right) & =\sum_{n=1}^{\infty} A_{n}^{\prime}(t)
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=1}^{\infty} n A_{n}(x) \tag{1.3}
\end{equation*}
$$

conjugate series, derived series and conjugate derived series of (1.1), respectively.

The infinite series $\sum a_{n}$ is said to be summable by Riesz's logarithmic mean of order α, or simply summable (R, \log , α), to sum s, provided that

$$
R_{a}(\omega)=\frac{1}{(\log \omega)^{\alpha}} \sum_{n<\omega}(\log \omega / n)^{\alpha} a_{n}
$$

tends to a limit s, as $\omega \rightarrow \infty$.
The summability by Riesz's logarithmic means of the Fourier series was treated by Hardy [1], Takahashi [3], and Wang [4], [5], [6]. Wang has proved the Riesz summability analogue of Bosanquet's theorem concerning Cesàro summability of Fourier series. This theorem was extended to the derived Fourier series by Matsuyama [2]. In this paper we shall prove the analogue for the conjugate derived Fourier series and some related theorems.

We shall introduce some notations. Let us put

$$
\begin{aligned}
& g_{0}(t)=g(t), \\
& g_{\alpha}(t)=\frac{1}{\Gamma(\alpha)} \int_{t}^{\pi}\left(\log \frac{u}{t}\right)^{\alpha-1} \frac{g(u)}{u} d u \quad(\alpha>0) .
\end{aligned}
$$

Then $g_{\alpha}(t) /\left(\log \frac{1}{t}\right)^{\alpha}$ is called the Riesz logarithmic mean of $g(t)$ of order α. If the Riesz logarithmic mean of $g(t)-s$ tends to zero as $t \rightarrow 0$, then we write

$$
\lim _{t \rightarrow 0} g(t)=s \quad(R, \log , \alpha)
$$

We denote by $g_{\alpha}^{\beta}(t)$ the β th integral of $g_{\alpha}(t)$, that is,

$$
\begin{aligned}
& g_{\alpha}^{\beta}(t)=\frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-u)^{\beta-1} g_{\alpha}(u) d u, \\
& g_{\alpha}^{0}(t)=g_{\alpha}(t) .
\end{aligned}
$$

2. In what follows we put

$$
\begin{aligned}
\varphi(t)=\varphi(x, t) & =\frac{1}{2}\{f(x+t)+f(x-t)-2 s \cos t\}, \\
g(t) & =\int_{t}^{\infty} \frac{\varphi(u)}{u^{2}} d u
\end{aligned}
$$

and suppose that $\varphi(t) / t$ is integrable in $(0, \infty)$. Then our theorems are stated as follows.

Theorem 1. If

$$
\lim _{t \rightarrow 0} g(t)=0 \quad(R, \log , \alpha),
$$

then the conjugate derived Fourier series of $f(t)$ is summable (R, \log, $\alpha+2)$ to s at the point x, where $\alpha \geqq 0$.

Theorem 2. If we suppose

$$
\int_{0}^{t} g_{\alpha}(u) d u=g_{\alpha}^{1}(t)=o\left[t\left(\log \frac{1}{t}\right)^{\alpha}\right]
$$

and

$$
\int_{t}^{\pi} \frac{\left|g_{\alpha}(u+t)-g_{\alpha}(u)\right|}{u} d u=o\left[\left(\log \frac{1}{t}\right)^{\alpha+2}\right],
$$

then the conjugate derived Fourier series of $f(t)$ is summable (R, \log, $\alpha+2$) to s at the point x, where $\alpha \geqq 0$.

Theorem 3. If the conjugate derived Fourier series is summable (R, \log , α), then we have

$$
\lim _{t \rightarrow 0} g(t)=0 \quad(R, \log , \alpha+1+\varepsilon)
$$

where $\alpha \geqq 2$ and ε is a positive number.
3. We start by some lemmas which need for the proof of our theorems. ${ }^{1)}$

Lemma 1. Let us put

$$
S_{\alpha}(t)=\int_{0}^{1}\left(\log \frac{1}{u}\right)^{\alpha} \sin u t d u
$$

for $\alpha>-1$. Then we have the following relations:

$$
\begin{align*}
& S_{\alpha}(t)= \begin{cases}O(1) & \text { for } t>0 \text { and } \alpha>-1, \\
O\left[(\log t)^{\alpha} / t\right] & \text { for } t \geqq 2, \alpha \geqq 0, \\
O\left[(\log t)^{\alpha-1} / t\right] & \text { for } t \geqq 2,0<\alpha<1,\end{cases} \tag{3.1}\\
& S_{\alpha}^{\prime}(t)= \begin{cases}O\left[(\log t)^{\alpha} / t^{2}\right] & \text { for } t \geqq 2, \alpha \geqq 1, \\
O\left(1 / t^{1+\alpha}\right) & \text { for } t \geqq 2,0 \leqq \alpha<1,\end{cases} \tag{3.2}\\
& S_{\alpha}^{\prime \prime}(t)=O\left[(\log t)^{\alpha} / t^{3}\right] \tag{3.3}
\end{align*} \text { for } t \geqq 2, \alpha \geqq 1, ~(\alpha>-1), \quad l
$$

1) Cf. Matsuyama [2] and Wang [4], [6], [7].

$$
\begin{align*}
& S_{0}(t)=(1-\cos t) / t, \tag{3.5}\\
& {\left[t S_{\alpha}(t)\right]^{\prime}=\alpha S_{\alpha-1}(t) \quad \text { for } \alpha>0,} \tag{3.6}\\
& S_{r+s+1}(t)=\frac{\Gamma(r+s+2)}{\Gamma(r+1) \Gamma(s+1)} \int_{0}^{1} S_{s}(u t)\left(\log \frac{1}{u}\right)^{r} d u \tag{3.7}\\
& \text { for } r>-1, s>-1 .
\end{align*}
$$

Lemma 2.

$$
\begin{aligned}
\frac{2}{\pi} \int_{0}^{\infty} S_{\alpha}(u) \sin x u d u & =\left(\log \frac{1}{x}\right)^{\alpha} & & \text { for } 0<x<1 \\
& =0 & & \text { for } x \geqq 1
\end{aligned}
$$

4. Proof of Theorem 1. The (R, \log , β) means of the conjugate derived Fourier series is denoted by

$$
R_{\beta}(\omega)=\frac{1}{(\log \omega)^{\beta}} \sum_{n<\omega}\left(\log \frac{\omega}{n}\right)^{\beta} n A_{n}(x),
$$

and the Fourier series of $\varphi(t)$ becomes

$$
\varphi(t) \sim \sum_{n=0}^{\infty} A_{n}(x) \cos n t-s \cos t
$$

Since $S_{\beta}^{\prime}(t)$ and $S_{\beta}^{\prime \prime}(t)(\beta \geqq 1)$ are integrable in ($0, \infty$), by Young's theorem, we get

$$
\int_{0}^{\infty} S_{\beta}^{\prime}(\omega t) \varphi(t) d t=\sum_{n=1}^{\infty} A_{n} \int_{0}^{\infty} S_{\beta}^{\prime}(\omega t) \cos n t d t-s \int_{0}^{\infty} S_{\beta}^{\prime}(\omega t) \cos t d t,
$$

where the nth term of the right side series is

$$
\begin{aligned}
\int_{0}^{\infty} S_{\beta}^{\prime}(\omega t) \cos n t d t & =\left[\frac{1}{\omega} S(\omega t) \cos n t\right]_{0}^{\infty}+\frac{n}{\omega} \int_{0}^{\infty} S_{\beta}(\omega t) \sin n t d t \\
& = \begin{cases}\frac{\pi}{2} \frac{n}{\omega^{2}}\left(\log \frac{\omega}{n}\right)^{\beta} & \text { for } \frac{n}{\omega}<1, \\
0 & \text { for } \frac{n}{\omega} \geqq 1,\end{cases}
\end{aligned}
$$

by Lemma 2. Hence

$$
\frac{2}{\pi} \int_{0}^{\infty} S_{\beta}^{\prime}(\omega t) \varphi(t) d t=-\frac{1}{\omega^{2}}\left(\log \frac{\omega}{1}\right)^{\beta} s+\sum_{n<\omega} A_{n}(x) n\left(\log \frac{\omega}{n}\right)^{\beta} \frac{1}{\omega^{2}} .
$$

Therefore

$$
\begin{align*}
R_{\beta}(\omega)-s & =\frac{2}{\pi} \frac{\omega^{2}}{(\log \omega)^{\beta}} \int_{0}^{\infty} S_{\beta}^{\prime}(\omega t) \varphi(t) d t \\
& =\frac{2}{\pi} \frac{\omega}{(\log \omega)^{\beta}} \int_{0}^{\infty} \frac{\varphi(t)}{t}\left[\beta S_{\beta-1}(\omega t)-S_{\beta}(\omega t)\right] d t, \tag{4.1}
\end{align*}
$$

by Lemma 1, (3.6). If we put $\varphi(t) / t=\xi(t)$, then, by integration by parts, we get

$$
\begin{aligned}
& \frac{\omega}{(\log \omega)^{\beta}} \int_{p}^{\infty} \xi(t) S_{\beta-1}(\omega t) d t \\
& \quad=\frac{\omega}{(\log \omega)^{\beta}}\left[\xi^{1}(t) S_{\beta-1}(\omega t)\right]_{p}^{\infty}-\frac{\omega^{2}}{(\log \omega)^{\beta}} \int_{p}^{\infty} \xi^{1}(t) S_{\beta-1}^{\prime}(\omega t) d t \\
& \quad=R_{1}+R_{2},
\end{aligned}
$$

where p is a sufficiently large but fixed number. Assuming $\beta \geqq \mathbf{2}$, and by (3.2) and $\int_{0}^{t} \varphi(u) / u d u=O(1)$, we get

$$
R_{1}=\frac{\omega}{(\log \omega)^{\beta}}\left[O\left\{\frac{(\log \omega t)^{\beta-1}}{\omega t}\right\}\right]_{p}^{\infty}=O\left(\frac{1}{p} \frac{1}{\log \omega}\right)
$$

and

$$
R_{2}=O\left\{\frac{\omega^{2}}{(\log \omega)^{\beta}} \int_{p}^{\infty} \frac{(\log \omega t)^{\beta-1}}{\omega^{2} t^{2}} d t\right\}=O\left(\frac{1}{p} \frac{1}{\log \omega}\right) .
$$

Similarly we get

$$
\frac{\omega}{(\log \omega)^{\beta}} \int_{p}^{\infty} \xi(t) S_{p}(\omega t) d t=O(1 / p) .
$$

On the other hand we have, by integration by parts and by (3.1), (3.6),

$$
\begin{aligned}
& \frac{\omega}{(\log \omega)^{\beta}} \int_{0}^{p} \xi(t) S_{\beta-1}(\omega t) d t \\
& \quad=\frac{-\omega}{(\log \omega)^{\beta}}\left[g(t) t S_{\beta-1}(\omega t)\right]_{0}^{p}+\frac{\omega}{(\log \omega)^{\beta}}(\beta-1) \int_{0}^{p} g(t) S_{\beta-2}(\omega t) d t \\
& =O[g(p) / \log \omega]+o(1)+\frac{\omega(\beta-1)}{(\log \omega)^{\beta}} \int_{0}^{\pi} g(t) S_{\beta-2}(\omega t) d t .
\end{aligned}
$$

We also get

$$
\frac{\omega}{(\log \omega)^{\beta}} \int_{0}^{p} \xi(t) S_{\beta}(\omega t) d t=O[g(p)]+o(1)+\frac{\omega \beta}{(\log \omega)^{\beta}} \int_{0}^{\pi} g(t) S_{\beta-1}(\omega t) d t
$$

Summing up above estimations, we see that

$$
\begin{equation*}
R_{\beta}(\omega)-s=\frac{2}{\pi} \frac{\omega}{(\log \omega)^{\beta}} \int_{0}^{\pi} g(t)\left[\beta(\beta-1) S_{\beta-2}(\omega t)-\beta S_{\beta-1}(\omega t)\right] d t+o(1), \tag{4.2}
\end{equation*}
$$ for sufficiently large p and $\beta \geqq 2$.

Suppose $\beta>2$ and let $h=[\beta-2]$, then, by h time application of integration by parts, we get

$$
\int_{0}^{\pi} g(t) S_{\beta-2}(\omega t) d t=(\beta-2)(\beta-3) \cdots(\beta-2-h) \int_{0}^{\pi} S_{\beta-2-h-1}(\omega t) g_{h+1}(t) d t
$$

Using here the formula ${ }^{2)}$

$$
g_{h+1}(t)=\frac{1}{\Gamma(h+1-\beta+2)} \int_{t}^{\pi}\left(\log \frac{u}{t}\right)^{n-\beta+2} \frac{g_{\beta-2}(u)}{u} d u
$$

and (3.7), we have

$$
\begin{equation*}
\int_{0}^{\pi} g(t) S_{\beta-2}(\omega t) d t \tag{4.3}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{(\beta-2)(\beta-3) \cdots(\beta-2-h)}{I(h+1-\beta+2)} \int_{0}^{\pi} S_{\beta-h-3}(\omega t) d t\left\{\int_{t}^{\pi}\left(\log \frac{u}{t}\right)^{h-\beta+2} \frac{g_{\beta-2}(u)}{u} d u\right\} \\
& =\frac{(\beta-2)(\beta-3) \cdots(\beta-2-h)}{\Gamma(h+3-\beta)} \int_{0}^{\pi} \frac{g_{\beta-2}(u)}{u} d u \int_{0}^{u}\left(\log \frac{u}{t}\right)^{h-\beta+2} S_{\beta-h-3}(\omega t) d t
\end{aligned}
$$

2) $C f$. Wang [6], Lemma 3.

$$
=\Gamma(\beta-1) \int_{0}^{\pi} S_{0}(\omega u) g_{\beta-2}(u) d u
$$

By similar estimation we get

$$
\begin{equation*}
\int_{0}^{\pi} g(t) S_{\beta-1}(\omega t) d t=\Gamma(\beta) \int_{0}^{\pi} S_{0}(\omega t) g_{\beta-1}(t) d t \tag{4.4}
\end{equation*}
$$

Substituting (4.3) and (4.4) into (4.2) and using (3.5), we get the following relation

$$
\begin{equation*}
R_{\beta}(\omega)-s=\frac{2}{\pi} \frac{\Gamma(\beta+1)}{(\log \omega)^{\beta}} \int_{0}^{\pi}\left[g_{\beta-2}(t)-g_{\beta-1}(t)\right] \frac{1-\cos \omega t}{t} d t+o(1) . \tag{4.5}
\end{equation*}
$$

Let us now put $\beta=\alpha+2(\alpha \geqq 0)$, then

$$
\begin{equation*}
R_{\alpha+2}(\omega)-s=\frac{2}{\pi} \frac{\Gamma(\alpha+3)}{(\log \omega)^{\alpha+2}} \int_{0}^{\pi}\left[g_{\alpha}(t)-g_{\alpha+1}(t)\right] \frac{1-\cos \omega t}{t} d t+o(1) \tag{4.6}
\end{equation*}
$$

By the assumption of the theorem,

$$
g_{\alpha}(t)=o\left[\left(\log \frac{1}{t}\right)^{\alpha}\right], \quad g_{\alpha+1}(t)=o\left[\left(\log \frac{1}{t}\right)^{\alpha+1}\right]
$$

as $t \rightarrow 0$. Hence, if we divide the integral (4.6) into those with the ranges $(0,2 / \omega)$ and $(2 / \omega, \pi)$ and use the estimation $(1-\cos \omega t) / t=O(\omega)$ or $=O(1 / t)$, we can easily get

$$
\begin{equation*}
R_{\alpha+2}(\omega)-s=o(1) \tag{4.7}
\end{equation*}
$$

Thus Theorem 1 is completely proved.
(To be continued)

References

[1] G. H. Hardy: Quart. Journ. Math., 2, 107-112 (1931).
[2] N. Matsuyama: Tôhoku Math. Journ., 1, 91-94 (1949).
[3] T. Takahashi: Proc. Phys.-Math. Soc. Japan, (3) 15, 181-183 (1933).
[4] F. T. Wang: Tôhoku Math. Journ., 40, 142-159 (1934).
[5] -: Ibid., 40, 237-240 (1934).
[6] -: Ibid., 40, 274-292 (1934).
$[7]$-: Ibid., 40, 392-397 (1934).

