28. On the Riesz Logarithmic Summability of the Conjugate Derived Fourier Series. I

By Masakiti KINUKAWA

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. SUETUNA, M.J.A., March 12, 1955)

1. Let f(x) be an integrable function with period 2π and its Fourier series be

(1.1)
$$f(x) \sim a_0/2 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x).$$

We call the series

(1.2)
$$\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) \equiv \sum_{n=1}^{\infty} B_n(t),$$
$$\sum_{n=1}^{\infty} n(b_n \cos nx - a_n \sin nx) = \sum_{n=1}^{\infty} A'_n(t)$$

and

(1.3)
$$\sum_{n=1}^{\infty} n(a_n \cos nx + b_n \sin nx) = \sum_{n=1}^{\infty} nA_n(x)$$

conjugate series, derived series and conjugate derived series of (1.1), respectively.

The infinite series $\sum a_n$ is said to be summable by Riesz's logarithmic mean of order α , or simply summable (R, \log, α) , to sum s, provided that

$$R_{a}(\omega) = \frac{1}{(\log \omega)^{a}} \sum_{n < \omega} (\log \omega/n)^{a} a_{n}$$

tends to a limit s, as $\omega \rightarrow \infty$.

The summability by Riesz's logarithmic means of the Fourier series was treated by Hardy [1], Takahashi [3], and Wang [4], [5], [6]. Wang has proved the Riesz summability analogue of Bosanquet's theorem concerning Cesàro summability of Fourier series. This theorem was extended to the derived Fourier series by Matsuyama [2]. In this paper we shall prove the analogue for the conjugate derived Fourier series and some related theorems.

We shall introduce some notations. Let us put

$$g_0(t) = g(t),$$

$$g_\alpha(t) = \frac{1}{\Gamma(\alpha)} \int_t^{\pi} \left(\log \frac{u}{t} \right)^{\alpha - 1} \frac{g(u)}{u} du \qquad (\alpha > 0).$$

Then $g_{\alpha}(t) / \left(\log \frac{1}{t} \right)^{\alpha}$ is called the Riesz logarithmic mean of g(t) of order α . If the Riesz logarithmic mean of g(t)-s tends to zero as $t \to 0$, then we write

$$\lim_{t\to 0} g(t) = s \ (R, \log, \alpha).$$

M. KINUKAWA

[Vol. 31,

We denote by $g_{\alpha}^{\beta}(t)$ the β th integral of $g_{\alpha}(t)$, that is,

$$g^{\scriptscriptstyle B}_{\scriptscriptstyle \alpha}(t) = \frac{1}{\Gamma(\beta)} \int_{\scriptscriptstyle 0}^{t} (t-u)^{\beta-1} g_{\scriptscriptstyle \alpha}(u) du,$$

$$g^{\scriptscriptstyle 0}_{\scriptscriptstyle \alpha}(t) = g_{\scriptscriptstyle \alpha}(t).$$

$$\begin{split} \varphi(t) = \varphi(x, t) = &\frac{1}{2} \Big\{ f(x+t) + f(x-t) - 2s \cos t \Big\}, \\ g(t) = &\int_{t}^{\infty} \frac{\varphi(u)}{u^2} \, du \end{split}$$

and suppose that $\varphi(t)/t$ is integrable in $(0, \infty)$. Then our theorems are stated as follows.

Theorem 1. If

$$\lim_{t\to 0} g(t) = 0 \qquad (R, \log, \alpha),$$

then the conjugate derived Fourier series of f(t) is summable $(R, \log, a+2)$ to s at the point x, where $a \ge 0$.

Theorem 2. If we suppose

$$\int_{0}^{t} g_{\alpha}(u) du = g_{\alpha}^{1}(t) = o\left[t\left(\log\frac{1}{t}\right)^{\alpha}\right]$$

and

$$\int_{t}^{\pi} \frac{|g_{a}(u+t)-g_{a}(u)|}{u} du = o\left[\left(\log\frac{1}{t}\right)^{a+2}\right],$$

then the conjugate derived Fourier series of f(t) is summable $(R, \log, a+2)$ to s at the point x, where $a \ge 0$.

Theorem 3. If the conjugate derived Fourier series is summable (R, \log, a) , then we have

$$\lim_{t\to 0} g(t) = 0 \qquad (R, \log, \alpha + 1 + \varepsilon),$$

where $\alpha \geq 2$ and ε is a positive number.

3. We start by some lemmas which need for the proof of our theorems.¹⁾

Lemma 1. Let us put

$$S_{a}(t) = \int_{0}^{1} \left(\log \frac{1}{u}\right)^{a} \sin ut \ du$$

for $\alpha > -1$. Then we have the following relations:

$$(3.1) \qquad S_{\alpha}(t) = \begin{cases} O(1) & for \ t > 0 \ and \ a > -1, \\ O[(\log t)^{\alpha}/t] & for \ t \ge 2, \ a \ge 0, \\ O[(\log t)^{\alpha - 1}/t] & for \ t \ge 2, \ 0 < \alpha < 1, \end{cases}$$

(3.2)
$$S'_{a}(t) = \begin{cases} O[(\log t)^{a}/t^{2}] & \text{for } t \ge 2, \ a \ge 1, \\ O(1/t^{1+a}) & \text{for } t > 2, \ 0 \le a \le 1 \end{cases}$$

- $(3.3) S_{\alpha}^{\prime\prime}(t) = O[(\log t)^{\alpha}/t^{3}] for t \ge 2, \ \alpha \ge 1,$
- $(3.4) S_a(0) = 0 (a > -1),$

1) Cf. Matsuyama [2] and Wang [4], [6], [7].

No. 3] Riesz Logarithmic Summability of the Conjugate Derived Fourier Series. I 123

(3.5)
$$S_0(t) = (1 - \cos t)/t,$$

$$[tS_a(t)]' = aS_{a-1}(t) \quad for \ a > 0,$$

(3.7)
$$S_{r+s+1}(t) = \frac{\Gamma(r+s+2)}{\Gamma(r+1) \Gamma(s+1)} \int_{0}^{1} S_{s}(ut) \left(\log \frac{1}{u}\right)^{r} du$$

for $r > -1, \ s > -1.$

Lemma 2.

$$egin{array}{ll} \displaystyle rac{2}{\pi}\int_0^\infty S_{lpha}(u)\sin xu\;du = \left(\lograc{1}{x}
ight)^{lpha} & for \;\; 0 < x < 1, \ = 0 & for \;\; x \geq 1. \end{array}$$

4. Proof of Theorem 1. The (R, \log, β) means of the conjugate derived Fourier series is denoted by

$$R_{\beta}(\omega) = \frac{1}{(\log \omega)^{\beta}} \sum_{n < \omega} \left(\log \frac{\omega}{n} \right)^{\beta} n A_{n}(x),$$

and the Fourier series of $\varphi(t)$ becomes

$$\varphi(t) \sim \sum_{n=0}^{\infty} A_n(x) \cos nt - s \cos t.$$

Since $S'_{\beta}(t)$ and $S''_{\beta}(t) \ (\beta \ge 1)$ are integrable in $(0, \infty)$, by Young's theorem, we get

$$\int_{0}^{\infty} S_{\beta}'(\omega t) \varphi(t) dt = \sum_{n=1}^{\infty} A_n \int_{0}^{\infty} S_{\beta}'(\omega t) \cos nt \, dt - s \int_{0}^{\infty} S_{\beta}'(\omega t) \cos t \, dt,$$

where the nth term of the right side series is

$$\begin{split} \int_{0}^{\infty} S_{\beta}'(\omega t) \cos nt \, dt = & \left[\frac{1}{\omega} S(\omega t) \cos nt \right]_{0}^{\infty} + \frac{n}{\omega} \int_{0}^{\infty} S_{\beta}(\omega t) \sin nt \, dt \\ = & \begin{cases} \frac{\pi}{2} \frac{n}{\omega^{2}} \left(\log \frac{\omega}{n} \right)^{\beta} & \text{for } \frac{n}{\omega} < 1, \\ 0 & \text{for } \frac{n}{\omega} \ge 1, \end{cases} \end{split}$$

by Lemma 2. Hence

$$\frac{2}{\pi}\int_{0}^{\infty}S_{\beta}'(\omega t)\varphi(t)dt = -\frac{1}{\omega^{2}}\left(\log\frac{\omega}{1}\right)^{\beta}s + \sum_{n<\omega}A_{n}(x)n\left(\log\frac{\omega}{n}\right)^{\beta}\frac{1}{\omega^{2}}.$$

Therefore

(4.1)
$$R_{\beta}(\omega) - s = \frac{2}{\pi} \frac{\omega^{2}}{(\log \omega)^{\beta}} \int_{0}^{\infty} S_{\beta}'(\omega t) \varphi(t) dt$$
$$= \frac{2}{\pi} \frac{\omega}{(\log \omega)^{\beta}} \int_{0}^{\infty} \frac{\varphi(t)}{t} \Big[\beta S_{\beta-1}(\omega t) - S_{\beta}(\omega t)\Big] dt,$$

by Lemma 1, (3.6). If we put $\varphi(t)/t = \xi(t)$, then, by integration by parts, we get

$$\begin{split} & \frac{\omega}{(\log \omega)^{\beta}} \int_{p}^{\infty} \xi(t) S_{\beta-1}(\omega t) dt \\ &= \frac{\omega}{(\log \omega)^{\beta}} \Big[\xi^{1}(t) S_{\beta-1}(\omega t) \Big]_{p}^{\infty} - \frac{\omega^{2}}{(\log \omega)^{\beta}} \int_{p}^{\infty} \xi^{1}(t) S_{\beta-1}'(\omega t) dt \\ &= R_{1} + R_{2}, \end{split}$$

[Vol. 31,

where p is a sufficiently large but fixed number. Assuming $\beta \ge 2$, and by (3.2) and $\int^t \varphi(u)/u \, du = O(1)$, we get

$$R_1 = \frac{\omega}{(\log \omega)^{\beta}} \left[O\left\{ \frac{(\log \omega t)^{\beta-1}}{\omega t} \right\} \right]_p^{\infty} = O\left(\frac{1}{p} \frac{1}{\log \omega} \right)$$

and

$$R_2 = O\Big\{rac{\omega^2}{(\log \omega)^eta}\int_p^\infty rac{(\log \omega t)^{eta-1}}{\omega^2 t^2}dt\Big\} = O\Big(rac{1}{p} rac{1}{\log \omega}\Big).$$

Similarly we get

$$\frac{\omega}{(\log \omega)^{\beta}} \int_{p}^{\infty} \xi(t) S_{\beta}(\omega t) dt = O(1/p).$$

On the other hand we have, by integration by parts and by (3.1), (3.6),

$$\begin{split} & \frac{\omega}{(\log \omega)^{\beta}} \int_{0}^{p} \xi(t) S_{\beta-1}(\omega t) dt \\ &= \frac{-\omega}{(\log \omega)^{\beta}} \Big[g(t) t S_{\beta-1}(\omega t) \Big]_{0}^{p} + \frac{\omega}{(\log \omega)^{\beta}} (\beta-1) \int_{0}^{p} g(t) S_{\beta-2}(\omega t) dt \\ &= O[g(p)/\log \omega] + o(1) + \frac{\omega(\beta-1)}{(\log \omega)^{\beta}} \int_{0}^{\pi} g(t) S_{\beta-2}(\omega t) dt. \end{split}$$

We also get

$$\frac{\omega}{(\log \omega)^{\beta}} \int_{0}^{p} \xi(t) S_{\beta}(\omega t) dt = O[g(p)] + o(1) + \frac{\omega\beta}{(\log \omega)^{\beta}} \int_{0}^{\pi} g(t) S_{\beta-1}(\omega t) dt.$$

Summing up above estimations, we see that

(4.2)
$$R_{\beta}(\omega) - s = \frac{2}{\pi} \frac{\omega}{(\log \omega)^{\beta}} \int_{0}^{\pi} g(t) [\beta(\beta - 1)S_{\beta - 2}(\omega t) - \beta S_{\beta - 1}(\omega t)] dt + o(1),$$

for sufficiently large p and $\beta \ge 2$.

Suppose $\beta > 2$ and let $h = \lfloor \beta - 2 \rfloor$, then, by h time application of integration by parts, we get

$$\int_{0}^{\pi} g(t) S_{\beta-2}(\omega t) dt = (\beta-2)(\beta-3) \cdots (\beta-2-h) \int_{0}^{\pi} S_{\beta-2-h-1}(\omega t) g_{h+1}(t) dt.$$

Using here the formula²⁾

$$g_{h+1}(t) = \frac{1}{\Gamma(h+1-\beta+2)} \int_{t}^{\pi} \left(\log \frac{u}{t}\right)^{h-\beta+2} \frac{g_{\beta-2}(u)}{u} du,$$

and
$$(3.7)$$
, we have

$$(4.3) \int_{0}^{\pi} g(t) S_{\beta-2}(\omega t) dt \\= \frac{(\beta-2)(\beta-3)\cdots(\beta-2-h)}{I(h+1-\beta+2)} \int_{0}^{\pi} S_{\beta-h-3}(\omega t) dt \Big\{ \int_{t}^{\pi} \Big(\log\frac{u}{t}\Big)^{h-\beta+2} \frac{g_{\beta-2}(u)}{u} du \Big\} \\= \frac{(\beta-2)(\beta-3)\cdots(\beta-2-h)}{\Gamma(h+3-\beta)} \int_{0}^{\pi} \frac{g_{\beta-2}(u)}{u} du \int_{0}^{u} \Big(\log\frac{u}{t}\Big)^{h-\beta+2} S_{\beta-h-3}(\omega t) dt$$

2) Cf. Wang [6], Lemma 3.

No. 3] Riesz Logarithmic Summability of the Conjugate Derived Fourier Series. I 125

$$= \Gamma(\beta-1) \int_0^{\pi} S_0(\omega u) g_{\beta-2}(u) \, du.$$

By similar estimation we get

(4.4)
$$\int_{0}^{\pi} g(t) S_{\beta-1}(\omega t) dt = \Gamma(\beta) \int_{0}^{\pi} S_{0}(\omega t) g_{\beta-1}(t) dt.$$

Substituting (4.3) and (4.4) into (4.2) and using (3.5), we get the following relation

(4.5)
$$R_{\beta}(\omega) - s = \frac{2}{\pi} \frac{\Gamma(\beta+1)}{(\log \omega)^{\beta}} \int_{0}^{\pi} \left[g_{\beta-2}(t) - g_{\beta-1}(t) \right] \frac{1 - \cos \omega t}{t} dt + o(1).$$

Let us now put $\beta = \alpha + 2 \ (\alpha \ge 0)$, then

(4.6)
$$R_{a+2}(\omega) - s = \frac{2}{\pi} - \frac{\Gamma(a+3)}{(\log \omega)^{a+2}} \int_{0}^{\pi} \left[g_{a}(t) - g_{a+1}(t) \right] \frac{1 - \cos \omega t}{t} dt + o(1).$$

By the assumption of the theorem,

$$g_a(t) = o\left[\left(\log \frac{1}{t}\right)^a\right], \quad g_{a+1}(t) = o\left[\left(\log \frac{1}{t}\right)^{a+1}\right],$$

as $t \to 0$. Hence, if we divide the integral (4.6) into those with the ranges $(0, 2/\omega)$ and $(2/\omega, \pi)$ and use the estimation $(1 - \cos \omega t)/t = O(\omega)$ or = O(1/t), we can easily get

(4.7) $R_{\alpha+2}(\omega) - s = o(1).$

Thus Theorem 1 is completely proved.

(To be continued)

References

- [1] G. H. Hardy: Quart. Journ. Math., 2, 107-112 (1931).
- [2] N. Matsuyama: Tôhoku Math. Journ., 1, 91-94 (1949).
- [3] T. Takahashi: Proc. Phys.-Math. Soc. Japan, (3) 15, 181-183 (1933).
- [4] F. T. Wang: Tôhoku Math. Journ., 40, 142-159 (1934).
- [5] —: Ibid., **40**, 237–240 (1934).
- [6] —: Ibid., **40**, 274–292 (1934).
- [7] —: Ibid., **40**, 392–397 (1934).