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1. Let f(x) be an integrable function with period 2 and s(z)
be the nth partial sum of Fourier series of f(x).

Recently, S. Izumi has proved the following theorem"
If f(x) belongs to the Lipr(O<rl) class, then the series2)

, s(x)-f(x)t2/n (log n)r

converges uniformly, where fl= 1- 2r and 7> 1 or >2 according as
0<a< 1/2 or 1/2a< 1.

The object of this paper is to prove the following theorem,
which may be partially more general than the above theorem:

Theorem 1. If f(x) belongs to the Lip (0< < 1/2) class then
the series

= n (loa ny
converes niforml, where $=l-ka, />1, lka, and kO.

Theorem 2. If f(z) belonas to the Lip r class and if ka-1,
then the series

(log n)
converges uniformly, where r>(1-cr)/a and k>2.

2. For he proof of the theorem we need the following lemma:
Lemma 1. Under the condition of Theorem 1, we have

(2.1) ls(x)-f(x) i- O(n-),
=1

uniformly.
Lemma 2. Under the condition of Theorem 2, we have

2,1s(x)-f(x) l=O([log n-),
uniformly.

Proof of Lemma 1.4 We have

I= (=l s(x)-f(x)I)/

2) We suppose 1/(logn)=l or n=l.
3) This theorem was suggested by Mr. I. Oyama.
4) Cf. A. Zygmund" Trigonometrical series, p. 238, and T. Tsuehikura" Mathe-

matiea Japonieae, 1, 1-5 (1949).



514 M. KINUKAWA [Vol. 31,

(2.2) 1 cw(t)
t=, r 2 sin t/2

I/n

say, where m(O-()-f(m+)+f(.-)-2f(). Then

f /"t dt)
For ,he ease k2, by the Hausdorff-Young inequality we have

fe_o{( z,(t) ’dt)1/’} (l/k+l/k’=l),

where, by {he assumDfion 1 >k, k’(- 1)- 1.
Hence we

I2__ O(nl--1/’) O(n
Thus we have Lemma 1 for ghe ease k2. Le us suppose gha

O<e<2, k2, ghen by the Hlder inequaligy and by ghe assumpgion
<1/2,

,()-f()I ,()-f()1 /-/"
=1 =1

O(n<*-*/) n*-/ O(n-).
Hence Lemma 1 is also established for ghe ease 0<k<2.

Proof of Lemma 2. By the above argument, I-0(1) and by
(2.)

/"
t-} o{(f

Therefore I-O(log /’)-O(log -), which eomlees he roof
of Lemma 2.. Proof of Theorem 1. By he Abel ransformaion, we have

21/(lo).= n(logn)
1+ N,(iog)

-0 n*-/n+ (log n) + 0 N*-=/N*(log N)r), by Lemma 1,
Ln=l

Thus we have Theorem 1.
Proof of Theorem 2. By ghe same way we have
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N 2V-1

=l (loft n)
1+ ls(x)-f(x)

=0{, (log n)-/[n(logn)+} + 0 {(log N)-/(log
=O[lll[n(lon)x-1/a+2} +

since r- 1/a + 1>0, which completes he proof of Theorem 2.
4. Next we shall prove the following

Theorem 3. If
(4.1) f(x + t)-f(x) =O{l t l/Qlog
uniformly, then the series

s(x) f(x) i/n=
converges uniformly, where 1/2 >a > O, -1- ka, 1 ka, k O, and
7>l/k.

Theorem 4. If f(x) satisfies (4.1) and if ka--1, then the series

,(x)-f(x)

converges uniformly, where k2 and 1 + k(7-1) > 0.
The proof of Theorem 8 may be done by Che following lemma,

as in he proof of Theorem 1.
Lemma 3. Under the assumption of Theorem 3, we have

(4.2) s(x)-f(x) I-On-=/(log n)V.

Proof of Lemma 3. If (4.2) is established for k2, hen it
holds a fortiori for every 0<k<2. Hence we may suppose k2
(el. Proof of Lemma 1). We divide I, which is denoted by (2.2),
into following hree parts;

I+ I’+&,
where 0<<min. [1, (1 By he assumption, we have

and, by the Hausdorff-Young inequality,

/n /

=O{(log
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By he same way,

Summing up above estimations, we get the required.
Now we prove Theorem 4. By the assumption, we easily see

,hat
I--OE1/(]og n)

and

L.=O{f=t’c-)/(log l k’-j dt}/"
/

/,
(log 1/)’r

for k’7 k/(k- 1) > 1.
Hence we get the theorem.

5. Our Cheorems stated above may be extended. For example,
we have

Theorem 5. If

fl (u)lu du-O(t), uniformly,

then the series

(lo )
conveGes uniformly, where 1-2>0 and 7> 1.

Theorem 5. If f(x) belongs to the Lip (, p) class, then the series

n6(logn)
converges almost everywhere, where k O,
1- ka, and y> 1.

Theorem 7. If

then the series

converges almost everywhere, where >0, >1,
and 8 1-

The proo o Theorem 5 is similar o that o Theorem 1,) and
he proo o Theorems 6 and 7 runs similarly as in he heorem
S. Izumi.) Hence we omigg {he detail.

5) Cf. G. Alexits: Acta Szeged, 3, 32-37 (1927).
6) S. Izumi: To appear.


