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50. Boundedness of Semicontinuous Finite Real Functions

By Shouro KASAHARA
Kobe University
(Comm. by K. KuNUGI, M.J.A., April 12, 1957)

A number of interesting characterizations of pseudo-compact
spaces? has been given by various authors. In the present note, we
concern with the spaces on which all semicontinuous finite valued
real functions are bounded. All topological spaces to be considered
in what follows will be assumed to satisfy the axiom T, of Fréchet.

THEOREM 1. The following properties of a topological space E
are equivalent:

(1) Ewvery upper semicontinuous finite real function on E is
bounded above.”

(2) Ewvery lower semicontinuous finite real function on E s
bounded below.

(8) The space E s countably compact.”

Proof. It is clear that (1) and (2) are equivalent. To prove the
implication (1)->(3), suppose that E is not countably compact. Then
there exists a sequence {x,} (n=1,2,---) of points of £ which has
pno cluster point. A set which consists of a single point being closed,
the function f, defined by

" for x ==,
f"(x)_{ 0 for xu,
is upper semicontinuous for any . As can readily be seen, the func-

tion f(w):%fn(x) is of finite value. Since the subsequence {,},>.
n=1

is a closed set for any positive integer m, f is upper semicontinuous,
but it is not bounded above. Conversely, let us suppose that the space
E is countably compact, and let an upper semicontinuous finite real
function f on E be given. Then, for any positive integer u, the set
0,={xc E; f(x)<n} being open, the sets O, form a countable open
covering of E when n runs over the positive integers. Now, since
E is countably compact, for a suitable positive integer m, we have
E=0,, that is to say f(x)<m for all xe E. This completes the proof
of the theorem.

1) A completely regular space is said to be pseudo-compact if every continuous
function on it is bounded.

2) We say that a real valued function f defined on a set E is bounded above
(bounded below) if there is a constant & such that f(x) <k (f(x)=Fk) for all x e F.

3) A topological space in which every countable open covering has a finite sub-
covering is called countably compact,
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A family of subsets of a topological space E is said to be point
finite if each point of E belongs at most to a finite number of the
members of the family. A covering of E consisting of closed sets
is called closed covering of E.

THEOREM 2. The following properties of a topological space E
are equivalent:

(1) Ewvery upper semicontinuous finite real function on E s
bounded below.

(2) Every lower semicontinuous finite real funmction on E s
bounded above.

(8) Every point finite family of open sets of E consists of a
finite number of the members.

(4) Every decreasing sequence of mon-empty open sets of E has
a non-empty intersection.

(5) Ewvery sequence of open sets of E which possesses the finite
intersection property has a non-empty intersection.

(6) Every countable closed covering of E has a finite subcover-
mg.

Proof. The proof of the implication (1)—(2) is straight-forward,
and the equivalence of the properties (4), (5) and (6) may be shown
easily. In order to prove that (2) implies (3), let a point finite family
of open sets of E be given and suppose that it contains a sequence
of open sets O, (n=1,2,--.). Define

n for z €O,

f"(w)_{ 0 for z€0,
then each function f, is lower semicontinuous. Since the family {O,}
is point finite, the function f(x)=supf,(x) is of finite value and lower

semicontinuous; but, for any positive integer n, we can find a point
xe E such that f(x)>mn, contrary to (2). Therefore the family can
not possess infinitely many members. The implication (3)—(4) is visible,
since a decreasing sequence of open sets with empty intersection is point
finite. Thus the proof of our theorem is completed if the implication
(4)—> (1) has been proved. Now, let f be an upper semicontinuous finite
real function on E, For any positive integer m, the set O,={rcE;
S(x)<—mn} is open, so that O, (n=1,2,...) is a decreasing sequence
of open sets. Therefore, if each open set O, were not empty, so

would be the intersection ﬁ 0,; let xe¢ ﬁ 0O,, then for any positive

n=1 n=1
integer m, we should have f(x)<—mn, which is absurd. It follows
that an open set O, must be empty, and hence f is bounded below.
It is quite obvious that if a topological space has one of the
properties mentioned in Theorem 2, then every open set of the space
has also these properties. A topological space consisting of a finite
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number of points has of course these properties. On the other hand,
we obtain the following

THEOREM 8. A regular space E which has one of the properties
mentioned in Theorem 2 comsists of a finite number of points.

Proof. Considering Theorem 2 of [3], we can immediately deduce
from the preceding theorem that a regular space has one of the
properties mentioned in Theorem 2 of the present note if and only
if every open set of the space is countably compact. Hence, it suffices
to prove the following proposition:

If E is a Hausdorff topological space, then every open set of E
18 countably compact if and only if E consists of finitely many points.

Proof. We have only to verify the only if part of the proposition.
Suppose that the space E contains infinitely many points. Then we
can extract a sequence {x,} from E. By the assumption, E being
countably compact, the set A of cluster points of {x,} is not empty.
Since A is closed, its complement A° is open and consequently countably
compact. Hence, the set A° contains only a finite number of x,’s, since
otherwise A° would contain at least one cluster point of the sequence
{x,}. Thus all but a finite number of x,’s are cluster points of the
sequence {x,}. We may assume therefore, without loss of generality,
that each member z, is a cluster point of the sequence {x,}. Let V;
and U, be disjoint neighbourhoods of z, and «x, respectively. Since w,
is a cluster point of {z,}, there exists in U, at least one of x,’s distinct
from w,; denote it by x,. Then we can find in U, disjoint neigh-
bourhoods V. and U of #, and =, respectively. Suppose now that
we have constructed pairwise disjoint open sets Vi, V,,---, V,, and
U,.. containing @, ®,, ®,,- -+, %, respectively. We can find then in
U,.. at least one of z,’s distinet from Ly S8Y T and we can
assign to x,  and w, . disjoint neighbourhoods V,, ., and U,.. re-
spectively, where V,,, and U,,, are both contained in U,.,,. We

obtain thus a subsequence a= {x, %, %+, %, , -} of the sequence

{x.} and a sequence of pairwise disjoint open sets {V,} such that

2, eV, %€V, and x, ¢V, for m=3,4,--- . Since the union U V,,
m=1

is open, it is countably compact by our assumption, but any cluster
point of the sequence a can not belong to D V.. We have thus

m=1

reached a contradiction, and hence E must be a finite set.

A topological space is termed a Gs-space provided each point of
the space is a G,-set. As has been shown by F. W. Anderson [1],
Gs-spaces need not be regular.

THEOREM 4. A Gs-space E which has one of the properties men-
tioned wn Theorem 2 is a finite set.

Proof. Observe first that each point of the space E is an open
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set. In fact, each point x of E being a G,-set, there exists a sequence
of open sets {0,} (n=1,2,---) such that
N O0,={x}.

n=1
Since the set consisting of a single point is closed, the intersection G,
of two sets, O, and the complement of the point x, is open, and hence
we have

ﬁancp (the empty set).

Therefore, by virtue of (5) of Theorem 2, there exists a finite number
of G5, say G,, G,," -, G,,, such that

101 G, =¢.

In other words, we have ﬁ 0,,={z}, and so the set {x} is open. Now,
i=1

if E were not a finite set, we could find a sequence {x,} of points of E
with x,=-2x, whenever n==m, {x,} being a point finite family of open
sets; this contradicts (3) of Theorem 2. Thus E is a finite set.

Moreover, from the fact that a compact Hausdorff space is regular,
it follows immediately that every metacompact* Hausdorff space having
one of the properties mentioned in Theorem 2 is a finite set.

The author does not know however whether there exists a topo-
logical space which has the properties mentioned in Theorem 2 and
has an infinite cardinal.
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4) A topological space is said to be metacompact if every open coverir;g of the
space has a point finite refinement. Cf, R. Arens and J. Dugundji [2].



