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Here we give the main existence theorem and discuss on the reg-
ularity of domains. We also extend the meaning of the heat operator
in the higher dimensional space in the final section.

8. Existence theorem (II). THEOREM 8.1. Suppose that f(x, y, u)
is continuous, quasi-bounded with respect t,o u and satisfies the condi-
tion (Lk) on (C, (--o, oo) and the condition (P) is satisfied for
the equation (E) and the bounded function (x, y) given on . Then
there exists a continuous solution of (E) on (C, .

PROOF. Since (5, q is a p-domain, the end points A and D of
the segment q also form end points of the curve
C. Prolonging the curve C upward from A and A. P
D by length , we get the points A and D. /

Denote the segment AD by q (not including
its end points), and denote by C the curve which
consists of the segment AA, the curve C and the t d
segment DD. Then (C, q is also a p-domain.

Now we extend the function f(x, y, u) to (C, 5" as follows: if
(x, y) belongs to the interior of the rectangle AADD or on the seg-
ment q we put f(x, y, u)--f(x, b, u) where b is the y-coordinate of A
or D. Since there is no ambiguity, we permit ourselves to write
f(x, y, u) for the extended function. The function (x, y) given on C
can be extended from C to C in the same way, i.e. if (x, y) belongs
to AA or DD then we put (x, y)=/3(x, b). We write also (x, y)
for the extended function.

Next we extend the v-function (x, y) on [C, to the P-func-
tion on [C, q as follows: on the rectangle AADD @(x, y) is equal
to a continuous solution of (E) with the boundary value @(x, y) on
the closed segment AD, @(A) on AA and q(D) on DD. This con-
tinuous solution does exist. Indeed, to find such a solution we shall
first solve the equation of heat conduction with the given boundary
condition, and let h(x, y) be a solution of it. We shall consider the
equation v=f(x, y, v+h(x, y)). Since f(x, y, u) is quasi-bounded with
respect to u on (C, , f(x, y, vq-h(x, y)) is also quasi-bounded with
respece to v on (C, q, therefore by Theorem 4.2 there is a solution
v(x, y) satisfying [v=f(x,y,v-kh(x,y)) and vanishing on the boundary.
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Then, v(x, y)+h(x, y) is the desired solution of (E). The function
+(x, y)extended in this way is evidently a ]P-function on [, 3.
By an analogous process we can extend (P-function on C,
function on [C,. Thus the condition (P) is satisfied for the equation

on
Now for any (x, y)(C,, set

u(x, y)-inf [(x, y); e on C1, 1}.
Let {(x, Yn); n--1, 2, 3,... be a countable dense set of points in (C,.
Then there exists a sequence {(x, y)} of P-functions on
such that
i) y)_> y)_> y)_>...
ii) lim (x, y)--u(x, y), i=l, 2, 3,....

Let (x0, Y0) be any point in (, 5’J. Then there exist (, and
(,2 such that q, (x0, Y0) (A?2, 2), [., .(A?, and the y-
coordinate of . is greater than that of and less
than that of 1. We have M_l(x, y) >_ M14.(x, y)_..., and 4(x, y) >_ M1(x, y) >_ u(x, y) on (,
1 By Theorem 7.4 we have M4 e, and by
Theorem 7.1 Mn(X, y) >__q(x, y), where q e
so that {M(x, y)} is bounded. Since Mr
is a solution of (E)in (,, by Theorem 5.3,
{M_r} converges uniformly to a continuous
solution U(x, y) of (E) on [A’,.

For the points (x, y) contained in (.,.J we have u(x, y)--
U(x, y). By applying the same method to the set of points {(x, y);
i--0, 1,2,...}, if we have U(x, y) like U(x, y) above, then

V(xo, yo)=U(Xo, Yo), V(x,, y,)--u(x,,
hold true for the points (x,, y) contained in (A’,. Since U(x, y)
and U(x, y) are continuous on (A?, ., we have U(xo, Yo)-- U(xo, Yo)
--u(x0, Y0). Since (x0, Y0) is an arbitrary point in (C, , u(x, y) is a
continuous solution of (E) on (, 5. Q.E.D.

9. Barriers. DEFINITION. Suppose that f(x, y, u) is quasi-bound-
ed with respect to u on (C, (--o, o). A continuous function
w(x, y) on [C, is said to be a barrier of (El) with respect to (x, y)
at the point (Xo, Yo) e C if
i) w(x, y) > 0 (x, y) [C, , (x, y) == (Xo, Yo),
ii) w(x, y)-->O as (x, y)--> (Xo, Yo), (x, y)e [, ,

1) Since we have (x, y)Mz(x, y)(x, y), by setting
f(x, y, (x, y)) 1(x, y)<u

g(x, y, u)= f(x, y, u) (x, y)u(x, y)
f(x, y, (x, y)) u< (y, x),

it suffices to consider the equation u=g(x, y, u) instead of (E). Here g(x,y, u) is
bounded, so that we can apply Theorem 5.3.
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iii) w(x, y)

_
M, where

i- sup {i f(x, y,/(Xo, Yo)) I, If(x, Y,/(xo, Yo))
(x, y) (, ]

THEOREM 9.1. Suppose that f(x, y, u) is continuous, quasi-bounded
with respect to u and satisfies the condition (Lk) on (C,

_
(--, ).

If there exists a barrier of (E) with respect to (x, y) at (Xo, Yo)
then (E) satisfies the condition (P) and we have

(9.1) /(Xo, yo)<_(Xo, yo)_t(Xo, yo)_(Xo, Yo)
where u(x, y) is the global solution in Theorem 8.1.

PROOF. Let s be an arbitrary positive number. Setting

4(x, y)--/(Xo, yo)-z-Kw(x, y),
(x, y) is a P-function of (E.,) on IF, if K is sufficiently large.
Indeed, for the sufficiently small neighbourhood U of (x0, Y0) (x, y)

>_(Xo, yo)+e>_fl(x, y) on C U, and since on C--U there exists
such that w(x, y)>_ a0, by the boundedness of (x, y), we have (x, y)

>_/(x, y) for sufficiently large K. Therefore (x, y)>_/(x, y) on C.
Next it follows from the inequality w(x, y)>_O that (x, y)>_(Xo, Yo)
on (, (?. Hence

f(x, y, 4(x, y))_ f(x, y, (Xo, Yo))_ -M.
Since [@(x, y)-Kw(x, y)_--KM, if K>_I, we have 4(x, y) <_ M_

f(x, y, @(x, y)) on (C, 2. Thus we have proved that @(x, y) is a -function on C, J if K is sufficiently large. Similarly we can prove
that

o(x, y)-(Xo, yo)--e--g.w(x, y)
is a -function on [C, if K. is sufficiently large. Thus the con-
dition (P) is satisfied.

Since W(Xo, yo)-O, there exist small neighbourhoods U and U. of
(Xo, Y0) such that

(x, y)_/(x0, y0)Z72 if (x, y)e C, U
p(x, y)_>(x0, y0)-2 if (x, y)e C, U..

In Theorem 8.1 we set u(x, y)-inf {@(x, y); @e. on C, q}, where
C, was an extended p-domain. However, the method of extend-
ing the -functions from those on C, q to those on C, J shows
that on , we have u(x, y)-inf {(x, y); e on C, q}. There-
fore, we have

(Xo, yo)--2s_u(x, y)_(Xo, y0)-2s on C, q_U U..
Hence we have (9.1). Q.E.D.

REMARK. Since (x, y)<_(x, y) on C, we have fl(Xo, yo)--(Xo, Yo)
in (9.1).

COROLLARY. If (x, y) is continuous at (Xo, Yo), then U(Xo, Yo)
yo).
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EXAMPLE. We shall give here an example of a p-domain
which has barriers at each point of C.

Suppose that consists of two side curves expressed by x--l(y)
and x--2(y), a_y_b, and a lower bounding segment. If
satisfy Lipschitz’s condition locally from the left on a< y

_
b, there

exists a barrier at each point of . In other words, if we can drive
at each point of C in a wedge whose upper bounding segment is
parallel to the x-axis, we can construct a barrier at each point of

We shall prove it.
Case 1. P(xo, Yo) is on the side boundary curves except their end

points. Since (y) satisfies Lipschitz’s condition locally from the left,
for sufficiently small e>0, on the line y-yo--e we can take two points
Q and Q such that the segment PQ lies in the exterior of [C,
except the point P and such that Q is in the
interior of (C,. Next on the line Y-Yo we
can take an exterior point P and an interior

\_...
point P such that the segment P.Q is wholly ".__
in (’, J. Finally on the line y-yo+e we can
take two points R and R such that R is in the
exterior and R. is on the side curve and moreover the segment R.P. is
wholly in the interior of (C, except the point R. We denote the
broken line RPPQQP.R by

_
and the open segment RR. by .

Let M be a constant greater than M where M is the constant
in the definition of barrier. If we take F so large that x 2y--F
is negative on C, ( _,, then

o(x, y)-- --MI(x-2y-F.)4
is positive on the domain (C, [.,. Now we give as a boundary
value the following continuous function on _: on RP it is equal to
(x, y), on PP it is equal to a continuous function which, not being
greater than (x, y), equal to (P) at P, equal to 0 at P and positive
except P, varies continuously from (P) to 0 as (x, y) varies from P to
P, and on the segment PQ it is equal to a continuous function which
has similar properties and varies from (Q) to 0 as (x, y) varies from
Q to P, and finally it is equal to (x, y) on the broken line QQP.R.
Let v(x, y) be a solution of [-lv=--M which is continuous on
and which admits the boundary value above, then v(x, y) is positive
except P and not greater than o(x, y) on [_,. If we define w(x, y)
as v(x, y)on _, and as o(x, y) on [C, .--.,, it is easily
seen that w(x, y) is a barrier at P(xo, Yo).

Case 2. P(xo, Yo) is at the end point of the side curve. If P is
at the upper end, it is sufficient to construct v(x, y) on the trapezoid
PQQ2P2. If P is at the lower end, it suffices to construct v(x, y) on
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the trapezoid R1P1PP.R..
The detail discussion is similar to Case 1.
Case 3. P(xo, Yo) is on the lower bounding segment. In such a

case, set v(x, y)--(X--Xo)2+(2+M)(y--yo). Then, v(x, y) 2 (2+M)
M, v(x, y)> 0 on C, if (x, y) (Xo, Yo) and V(Xo, y0)--0.
10. Regularity of domains. DEFINITION. We say that (xo, Yo)

is a regular point with respect to (El) and (x, y) if there is a bar-
tier of (El) with respect to (x, y) at the point (Xo, Yo).

From the definition of the barrier in the previous section, we see
directly that the barrier of (E) is also a barrier of the equation
I-]u=0, i.e. the barrier for M=0 in our sense. This barrier is just
what B. Pini defined in his paper.) Therefore, we see by his theorem
that if consists of regular points in our sense, there exists a solution
of the equation of heat conduction which admits the prescribed con-
tinuous boundary value. We shall prove the converse of this.

THEOREM 10.1. Let f(x, y, u) be quasi-bounded with respect to u
on (, 3_ (--o, o). If at each point of there is a barrier of the
equation of heat conduction, then every point of is the regular point

of (E) with respect to (x, y) where (x, y) is an arbitrary bounded
function on .

PROOF. Set M- sup {i f(x, y, (Xo, Yo)) i, f(x, y, (Xo, Y0)) ]},
(x, y) e (C, 5]

where (x0, Yo) is an arbitrary point on C. By the assumption we have
a barrier with respect to the equation of heat conduction, therefore
there exists a function v(x, y) such that

i) v(x, y) is continuous on [C, 3,
ii) v(x, y)>0 on IF, 3_ except at (x0, Y0),
iii) v(x, y)-->O as (x, y)-->(xo, Yo), (x, y) [C, ,
iv) v(x, y) O.

Now, since C consists of regular points of the equation of heat
conduction, there exists a solution v(x, y) of v---M which is con-
tinuous on 5, and which vanishes on C. The solution v(x, y)is
non-negative. Setting

 v(x, y),
w(x, y) is barrier of (E). Q.E.D.

11. The extension to higher dimensional spaces
3 we shall define a generalized heatFor the operator

3x t’
operator l in the (n+l)-dimensional space as follows. Let 3Z.r be
a surface defined by the expressions

2) B. Pini: Sulla soluzione generalizzata di Wiener per il primo problema nel
caso parabolico, Rend. Sem. Mat. Padova (1954).
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$1 xl+2ry/- sin O1/log cosec 0

$.--x+2rV’- sin 0log cosec 0

Sn--X,+2r sin Olog cosec 0

=t--r sin

where P--P(x, x,. ., Xn, t), Q-($, $,. ., $, ) and
COS COS 2" .COS n- COS

ye--COS W COS We" "COS W_e sin W_
v--cos 9 cos 9. sin

Vn_--COS sin

Vn--Sin ,
where (i--1 2, n--2) and 0_2.

We define u and u by the expressions

--lim (+2)
+of "".f{u()(P)}sin-OesO-

X (log eosee O)Jg...g_

T2
X (log cosec O)Jd .dn_dO,

where J=det

1 2 n

If u and u coincide, we denote it by u. This generalized

heat operator has the same properties listed in Section 1. All
results for (E), (E) and (E) given in Sections 2 to 10, except the
Example in Section 9, hold true for the equations

u--f(x,. ., x, t, u, 3u,. ., 3u,
u-f(x,. ., x, t, u, u,. ., u)

and
u-f(x,. ., Xn, t, U)

respectively.


