145. On the Projection of Norm One in W^{*}-algebras

By Jun Tomiyama
Mathematical Institute, Tôhoku University
(Comm. by K. Kunugi, m.J.A., Dec. 12, 1957)

In the present paper, we will study on the projection of norm one from any W^{*}-algebra onto its subalgebra. By a projection of norm one we mean a projection mapping from any Banach space onto its subspace whose norm is one. At first, we find some properties of a projection of norm one from a C^{*}-algebra to its C^{*}-subalgebra. These properties turn out to have some interesting applications to the recent theory of W^{*}-algebras, which we shall show in the following.

Through our discussions we denote the dual of a Banach space M and the second dual by M^{\prime} and $M^{\prime \prime}$, respectively.

Theorem 1. Let M be a C^{*}-algebra with a unit and N its C^{*} subalgebra. If π is a projection of norm one from M to N, then

1. π is order preserving, 2. $\pi(a x b)=a \pi(x) b$ for all $a, b \in N$,
2. $\pi(x) * \pi(x) \leq \pi(x * x)$ for all $x \in M$.

Proof. Consider the second dual of M and $N, M^{\prime \prime}$ and $N^{\prime \prime} . M^{\prime \prime}$ is a W^{*}-algebra containing M as a σ-weakly dense C^{*}-subalgebra by Sherman's theorem (cf. [14, 15]), and $N^{\prime \prime}$ may be considered as a W^{*}-subalgebra of $M^{\prime \prime}$, for it is identified with the bipolar of N in $M^{\prime \prime}$. The second transpose of π, the extension of π to $M^{\prime \prime}$, is a projection of norm one from $M^{\prime \prime}$ to $N^{\prime \prime}$. Thus, it suffices to prove the theorem when M is a W^{*}-algebra and N a W^{*}-subalgebra of M. As in [5, Lemma 8] we can show that π is *-preserving and order preserving, which one can easily see since π is of norm one.

Next, take a projection e of N and $a \in M$, positive and $\|a\| \leq 1$. We have $e \geq e a e$, whence $e \geq \pi(e a e)$, so that $\pi(e a e)=e \pi(e a e) e$. Thus, we have $\pi(e x e)=e \pi(e x e) e$ for all $x \in M$. Take an element $x \in M,\|x\| \leq 1$. Put $\pi(e x(1-e))=x^{\prime}$. Then

$$
\begin{aligned}
& \|e x(1-e)+n e\|=\|\{e x(1-e)+n e\}\{(1-e) x * e+n e\}\|^{1 / 2} \\
& =\left\|e x(1-e) x * e+n^{2} e\right\|^{1 / 2} \leq\left(1+n^{2}\right)^{1 / 2} \text { for all integers } n .
\end{aligned}
$$

On the other hand, if $\frac{e x^{\prime} e+e x^{\prime *} e}{2} \neq 0$ we may suppose without loss of generality that this element has a positive spectrum $\lambda>0$. Then,

$$
\begin{gathered}
\left\|x^{\prime}+n e\right\|=\left\|e x^{\prime} e+n e+e x^{\prime}(1-e)+(1-e) x^{\prime} e+(1-e) x^{\prime}(1-e)\right\| \\
\geq\left\|e\left(x^{\prime}+n l\right) e\right\| \geq\left\|\frac{e x^{\prime} e+e x^{\prime *} e}{2}+n e\right\| \geq \lambda+n \text { for all } n .
\end{gathered}
$$

Therefore, $\left\|x^{\prime}+n e\right\| \geq \lambda+n>\left(1+n^{2}\right)^{1 / 2} \geq\|e x(1-e)+n e\|$ for a sufficient-
ly large n, which is a contradiction. Thus $\frac{e x^{\prime} e+e x^{\prime *} e}{2}=0$. A slight modification leads us to $\frac{i e x^{\prime *} e-i e x^{\prime} e}{2}=0$. We get, $e x^{\prime} e=0$. For $e x(1-e)+n(1-e)$ we proceed the same computation and get, $(1-e) x^{\prime}$ $(1-e)=0$.

Now suppose $(1-e) x^{\prime} e \neq 0$. We have,

$$
\begin{aligned}
& \| x^{\prime}+n(1-e) x^{\prime} e \| \\
&=\left\|e x^{\prime}(1-e)+(n+1)(1-e) x^{\prime} e\right\| \\
&=\max \left\{\left\|e x^{\prime}(1-e)\right\|,(n+1)\left\|(1-e) x^{\prime} e\right\|\right\} \\
&=(n+1)\left\|(1-e) x^{\prime} e\right\| \text { for a sufficiently large } n .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\| x^{\prime}+n(1-e) x^{\prime} e & \|
\end{aligned}
$$

This is a contradiction, which yields $(1-e) x^{\prime} e=0$. Thus we have $x^{\prime}=e x^{\prime}(1-e)$. Since $\pi(x)=\pi(e x e)+\pi(e x(1-e))+\pi((1-e) x e)+\pi((1-e)$ $\cdot x(1-e)$), we have $e \pi(x)(1-e)=e \pi(e x(1-e))(1-e)=\pi(e x(1-e))$, and $e \pi(x) e=e \pi(e x e) e=\pi(e x e)$. Therefore $\pi(e x)=e \pi(x)$. We have $\pi(a x)$ $=a \pi(x)$ for all $a \in N$, because N is a W^{*}-subalgebra of M. Since these arguments are symmetric we get the conclusion 2°.

From $2^{\circ}, 3^{\circ}$ is easily shown: that is,

$$
\begin{aligned}
& 0 \leq \pi[(x-\pi(x)) *(x-\pi(x))]=\pi(x * x-x * \pi(x)-\pi(x) * x+\pi(x) * \pi(x)) \\
&=\pi(x * x)-\pi(x) * \pi(x) .
\end{aligned}
$$

By help of Theorem 1 we can prove the following theorem on W^{*}-algebra which is proved recently by S. Sakai [12].

Theorem 2. Suppose a C^{*}-algebra M is the adjoint space of a Banach space F, then it is a W^{*}-algebra and the topology $\sigma(M, F)$ of M is the σ-weak topology.

Proof. By [2] there exists a projection π of norm one from $M^{\prime \prime}$ to M whose kernel is the polar of F in $M^{\prime \prime}$. Then, by Theorem 1 , a $\pi^{-1}(0) b \subset \pi^{-1}(0)$ for all $a, b \in M$. Since M is a σ-weakly dense C^{*}-subalgebra of $M^{\prime \prime}$, we have

$$
x \pi^{-1}(0) y \subset \pi^{-1}(0) \quad \text { for all } x, y \in M^{\prime \prime}
$$

Thus $\pi^{-1}(0)$ is a σ-weakly closed ideal of $M^{\prime \prime}$ and π is a *-homomorphism from $M^{\prime \prime}$ onto M. Therefore M is isomorphic to $M^{\prime \prime} / \pi^{-1}(0)$ which is a W^{*}-algebra, that is, M is a W^{*}-algebra. The σ-weak topology of a W^{*}-algebra $M^{\prime \prime} / \pi^{-1}(0)$ is the quotient topology of the σ-weak topology of $M^{\prime \prime}$ which is equivalent to $\sigma\left(M^{\prime \prime}, M^{\prime}\right)$-topology (cf. [15]). Therefore the $\sigma(M, F)$-topology of M is the σ-weak topology of M by [1].

Combining this result with that of J. Dixmier [2] we get
Corollary. $A C^{*}$-algebra M is a W^{*}-algebra if and only if there exists a projection of norm one from $M^{\prime \prime}$, the second dual of M, to
M whose kernel is $\sigma\left(M^{\prime \prime}, M^{\prime}\right)$-closed.
Next, we apply this method to the following
Theorem 3 (cf. [13, Theorem 2]). Let M be a W^{*}-algebra, $N a$ C^{*}-algebra and ϕ an algebraic isomorphism from M onto N, then N is a W^{*}-algebra and is σ-weakly bicontinuous.

Proof. By [11] ϕ is uniformly continuous, so that it is bicontinuous by the classical theorem of Banach space. Let $M^{\prime \prime}$ and $N^{\prime \prime}$ be the second duals of M and N, then ϕ induces a σ-weakly bicontinuous isomorphism between two W^{*}-algebras $M^{\prime \prime}$ and $N^{\prime \prime}$ which is nothing but the second transpose of $\phi, \widetilde{\phi}$. Since M is a W^{*}-algebra, there exists a projection π_{0} of norm one described in the previous corollary. Put $\pi_{1}=\phi \pi_{0} \widetilde{\widetilde{\phi}}^{-1}: \pi_{1}$ is a projection from $N^{\prime \prime}$ to N and $\pi_{1}^{-1}(0)=\widetilde{\widetilde{\phi}} \pi_{0}^{-1}(0)$. Therefore $\pi_{1}^{-1}(0)$ is $\sigma\left(N^{\prime \prime}, N^{\prime}\right)$-closed. Moreover $\pi_{1}^{-1}(0)$ is an ideal since $\pi_{0}^{-1}(0)$ is an ideal of $M^{\prime \prime}$ as it is seen in the proof of Theorem 2. Hence N is *-isomorphic to a W^{*}-algebra $N^{\prime \prime} / \pi_{1}^{-1}(0)$, so that N is a W^{*}-algebra. Now let $\pi_{1}^{-1}(0)^{0}$ be the polar of $\pi_{1}^{-1}(0)$ in N^{\prime}, then $\pi_{1}^{-1}(0)^{0}$ may be regarded as N_{*}, the space of all σ-weakly continuous linear functionals on N, by Theorem 2. Denote the polar of $\pi_{0}^{-1}(0)$ in M^{\prime} by $\pi_{0}^{-1}(0)^{0}$, we have $\pi_{0}^{-1}(0)^{0}=M_{*}$. Then

$$
\begin{aligned}
& \left\langle\tilde{\phi}\left(\pi_{1}^{-1}(0)^{0}\right), \pi_{0}^{-1}(0)\right\rangle=\left\langle\pi_{1}^{-1}(0)^{0}, \widetilde{\widetilde{\phi}} \pi_{0}^{-1}(0)\right\rangle=\left\langle\pi_{1}^{-1}(0)^{0}, \pi_{1}^{-1}(0)\right\rangle=0, \text { and } \\
& \begin{aligned}
\left\langle\tilde{\phi}^{-1}\left(\pi_{0}^{-1}(0)^{0}\right), \pi_{1}^{-1}(0)\right\rangle & =\left\langle\pi_{0}^{-1}(0)^{0}, \widetilde{\underline{\phi}}^{-1} \pi_{1}^{-1}(0)\right\rangle=\left\langle\pi_{0}^{-1}(0)^{0}, \widetilde{क ् \phi}^{-1} \pi_{1}^{-1}(0)\right\rangle \\
& =\left\langle\pi_{0}^{-1}(0)^{0}, \pi_{0}^{-1}(0)\right\rangle=0 .
\end{aligned}
\end{aligned}
$$

Therefore ϕ is σ-weakly bicontinuous.
Theorem 4. Let M be a W^{*}-algebra, $N a C^{*}$-subalgebra of M and π a projection of norm one from M to N, then
1°. N is a W^{*}-algebra if $\pi^{-1}(0) \frown \bar{N}$ is σ-weakly closed where \bar{N} is the σ-weak closure of N in M,
$2^{\circ} . N$ is $a W^{*}$-subalgebra if π is faithful on positive elements in M.

Proof. Since $\pi(\bar{N})=N$, it suffices to consider the restriction of π to N. By Corollary of Theorem 2 there exists a projection π_{0} of norm one from $N^{\prime \prime}$ to N. Consider the restriction of π_{0} to $N^{\prime \prime}$ which is a W^{*}-subalgebra of $N^{\prime \prime}$ as shown in the proof of Theorem 1. By the proof of Theorem 2, we see that π_{0} is a σ-weakly continuous *-homomorphism of $\bar{N}^{\prime \prime}$ onto N, so that $\pi_{0}\left(N^{\prime \prime}\right)$ is σ-weakly closed in \bar{N} containing N (cf. [4]). Hence $\pi\left(N^{\prime \prime}\right)=\bar{N}$. Put $\pi_{1}=\pi \pi_{0}$ on $N^{\prime \prime}$, then π_{1} is a projection of norm one from $N^{\prime \prime}$ to N : moreover, $\pi_{1}^{-1}(0)$ $=\pi_{0}^{-1}\left(\pi^{-1}(0) \frown \bar{N}\right) \frown N^{\prime \prime}$, which is σ-weakly closed by the σ-weak topology in $N^{\prime \prime}$, that is, $\sigma\left(N^{\prime \prime}, N^{\prime}\right)$-topology. Therefore N is a W^{*}-algebra, which proves 1°.

Next, if $\left\{a_{a}\right\}$ is a bounded increasing directed set of self-adjoint elements of N, there exists an element a_{0} in M such that $a_{0}=\sup _{\alpha} a_{\alpha}$. Since π is order preserving, a simple computation shows $\pi\left(a_{0}\right)=\sup _{\alpha}^{\alpha} a_{\alpha}$ in N. Hence, we have $\pi\left(a_{0}\right) \geq a_{0}$, that is, $\pi\left(a_{0}\right)-a_{0} \geq 0$. Then, $\pi\left(\pi\left(a_{0}\right)\right.$ $\left.-a_{0}\right)=0$ which implies $\pi\left(a_{0}\right)-a_{0}=0$ since π is faithful on positive elements. Therefore N is a C^{*}-algebra in which the supremum of each bounded increasing directed set in N coincides with that in a W^{*}-algebra M. Hence N is a W^{*}-subalgebra of M owing to the result due to Kadison [6]. This proves 2°.

Remark. It is to be noticed that the first half part of Theorem 4 does not necessarily hold without any additional assumption. For example, take a commutative $A W^{*}$-algebra N whose spectrum space is not a hyperstonean space. N is a C^{*}-algebra on a Hilbert space H. Let M be the σ-weak closure of N on $H . \quad M$ is a commutative W^{*} algebra. Denote the self-adjoint parts of M and N by M_{s} and N_{s}, respectively. By $[9,10]$ there exists a projection of norm one from M_{s} onto N_{s}. Then we can extend this projection linearly to a projection from M to N without increasing its norm. Thus, we have a projection of norm one from M onto N and yet N is not a W^{*}-algebra (cf. [3]).

In the case of $A W^{*}$-algebra, we have
Theorem 5. Let M be an $A W^{*}$-algebra, N its C^{*}-subalgebra and π a projection of norm one from M to N, then
1°. N is an $A W^{*}$-algebra,
2°. N is an $A W^{*}$-subalgebra if π is faithful on positive elements in M.

Proof. Let S be an arbitrary set in N and denote by R_{0} and R the right annihilator in M and N, respectively. We have $R_{0}=e M$ for some projection e. Now, by Theorem 1, $S e=0$ implies $\pi(S e)=S \pi(e)$ $=0$. Hence there exists an element $a \in M$ such that $\pi(e)=e a$. We get, therefore,

$$
\pi(e)^{2}=\pi(e) \pi(e)=\pi(e \pi(e))=\pi(\pi(e))=\pi(e)
$$

so that $\pi(e)$ is a projection in N for $\pi(e)$ is positive. Besides, we have $\pi(e) N \subset R$. On the other hand, $\pi(e) N \supset \pi(e) R=\pi(e R)=\pi(R)=R$. We get $R=\pi(e) N$. That is, N is an $A W^{*}$-algebra (cf. [8]).

To prove the second half of the theorem, we consider (e_{α}), a family of orthogonal projections in N. Since N is an $A W^{*}$-algebra by 1°, there exists a projection e in N such that $e=\sup e_{\alpha}$ in N. On the other hand we have a projection e_{0} in M such that $e_{0}=\sup _{\alpha} e_{\alpha}$ in M. And the same computation as in the proof of 2° in Theorem 4 shows that $\pi\left(e_{0}\right)=e=e_{0}$ if π is faithful on positive elements in M. Thus N is an $A W^{*}$-subalgebra of M (cf. [7]).

References

[1] J. Dieudonné: La dualité dans les espaces vectoriels topoloğiques, Ann. École Norm. Sup., 59, 107-139 (1942).
[2] J. Dixmier: Sur un théorème de Banach, Duke Math. J., 15, 1057-1071 (1948).
[3] --: Sur certains espaces considerés par M. H. Stone, Summa Brasil Math., 11, 151-182 (1951).
[4] -: Formes linéaires sur un anneaux d'opérateurs, Bull. Soc. Math. Fr., 81, 9-39 (1953).
[5] R. V. Kadison: Isometries of operator algebras, Ann. Math., 54, 325-338 (1951).
[6] -: Operator algebras with a faithful weakly-closed representation, Ann. Math., 64, 175-181 (1956).
[7] I. Kaplansky: Algebras of type I, Ann. Math., 56, 460-472 (1952).
[8] -: Modules over $A W^{*}$-algebras, Amer. J. Math., 75, 939-943 (1953).
[9] L. Nachbin: A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc., 68, 28-46 (1950).
[10] D. B. Goodner: Projections in normed linear spaces, Trans. Amer. Math. Soc., 69, 89-108 (1950).
[11] C. E. Rickart: The uniqueness of norm problem in Banach algebras, Ann. Math., 51, 615-628 (1950).
[12] S. Sakai: A characterization of W^{*}-algebras, Pacific J. Math., 6, 763-773 (1956).
[13] -: On the σ-weak topology of W^{*}-algebras, Proc. Japan Acad., 32, 329-332 (1956).
[14] S. Sherman: The second adjoint of a C^{*}-algebra. Proc. Inter. Congress Math., 1, 470 (1950).
[15] Z. Takeda: Conjugate spaces of operator algebras, Proc. Japan Acad., 30, 90-95 (1954).

