95. Some Expectations in AW*-algebras

By Mitsuru Nakai
Mathematical Institute, Nagoya University
(Comm. by K. Kunugi, m.J.A., July 12, 1958)

1. Let A be a commutative $A W^{*}$-algebra (cf. [2]). We denote by B and P the totality of self-adjoint elements and projections in A, respectively. It is well known that A is isometrically isomorphic to the space $C(S)$ of all complex-valued continuous functions on a Stonean space S. In this representation, B (or P) is the totality of real-valued (or characteristic) functions in $C(S)$ which forms a conditionally complete vector lattice (or complete lattice) by the usual ordering in $C(S)$.

Let M be a left module over B. We shall call a mapping n of M into B an n-mapping on M if n satisfies

$$
\begin{array}{ll}
n(x+y) \leq n(x)+n(y) & (x, y \in M) \\
n(a x)=a n(x) & (x \in M, a \in A \text { with } a \geq 0) . \tag{2}
\end{array}
$$

If a mapping f of a subset $D(f)$ of M into B satisfies

$$
\begin{equation*}
-n(-x) \leq f(x) \leq n(x) \tag{3}
\end{equation*}
$$

then we call f to be n-bounded. In the case when f is additive and when $D(f)$ is an additive subgroup of M, we can replace (3) by the inequality: $f(x) \leq n(x)$.
2. For convenience, we state a simple lemma which is easily verified.

Lemma 1. Let M be a left module over (not necessarily commutative) $A W^{*}$-algebra L and $P(x)$ be a proposition concerning the element x in M. Suppose that the following two conditions are satisfied:
(4) If there exists a family $\left(e_{i} ; i \in I\right)$ of orthogonal projections in L with l.u.b. 1 such that all $P\left(e_{i} x\right)$ are true, then $P(x)$ is true.
(5) For any projection e in L which is not zero, we can find a non-zero projection e^{\prime} in L such that $e^{\prime} \leq e$ and $P\left(e^{\prime} x\right)$ is true. Then $P(x)$ is true.
3. Now we state an extension theorem of Hahn-Banach type.

Theorem 1. Let M be a left module over B with n-mapping n. Given an n-bounded B-module homomorphism of a B-submodule of M into B, it can be extended to an n-bounded B-module homomorphism of M into B.

Proof. Let h be an n-bounded B-module homomorphism of a submodule $D(h)$ of M. Let R be the set of all couples ($f, D\left(f^{\prime}\right)$), where f is an n-bounded B-module homomorphism of a submodule $D(f)$ of M containing $D(h)$ into B such that $f=h$ on $D(h)$. If we define
$\left(f_{1}, D\left(f_{1}\right)\right) \geq\left(f_{2}, D\left(f_{2}\right)\right)$ by the relation that $D\left(f_{1}\right) \supseteq D\left(f_{2}\right)$ and $f_{1}=f_{2}$ on $D\left(f_{2}\right)$, then R is inductively ordered and by Zorn's lemma there exists a maximal element ($f_{0}, D\left(f_{0}\right)$).

We shall prove that $D\left(f_{0}\right)=M$. Contrary to the assertion, suppose the existence of a non-zero element x_{0}^{\prime} in $M-D\left(f_{0}\right)$. Then we can find a non-zero e in P satisfying the condition
(6) for every non-zero $e^{\prime} \in P$ with $e^{\prime} \leq e$, we have $e^{\prime} x_{0}^{\prime} \notin D\left(f_{0}\right)$. For, otherwise, taking as $P(x)$, the proposition that x is in $D\left(f_{0}\right)$, we see that $P\left(x^{\prime}\right)$ satisfies (5). Moreover $P(x)$ satisfies (4) for all x in M. In fact, if there is an orthogonal family $\left(e_{i} ; i \in I\right)$ with l.u.b. 1 such that $e_{i} x \in D\left(f_{0}\right)$ for all i, then we can define

$$
g_{0}(y)=\sum_{I} e_{i} f_{0}\left(e_{i} y\right) \quad\left(y \in D\left(g_{0}\right)=B x+D\left(f_{0}\right)\right)
$$

where the right side denotes the unique element $w \in B$ such that $e_{j} w=e_{j} f_{0}\left(e_{j} y\right)$ for all j (cf. Kaplansky [3]). It is easy to show that $\left(g_{0}, D\left(g_{0}\right)\right) \in R$ and $\left(g_{0}, D\left(g_{0}\right)\right) \geq\left(f_{0}, D\left(f_{0}\right)\right)$. By the maximality of (f_{0}, $D\left(f_{0}\right)$), we have $D\left(g_{0}\right)=D\left(f_{0}\right)$; hence $P(x)$ is true. Thus, by Lemma 1 , $P\left(x_{0}^{\prime}\right)$ is true; that is, $x_{0}^{\prime} \in D\left(f_{0}\right)$ which is a contradiction.

Put $x_{0}=e x_{0}^{\prime}$, then we have
(6') $x_{0}=e x_{0}$ and $e^{\prime} x_{0} \in D\left(f_{0}\right)$ for any non-zero e^{\prime} in $e P$. For any $x_{1}, x_{2} \in D\left(f_{0}\right)$, using (1) and (3), we have

$$
f_{0}\left(x_{1}\right)-n\left(x_{1}-x_{0}\right) \leq n\left(x_{2}+x_{0}\right)-f\left(x_{2}\right) .
$$

By the conditionally completeness of B, we can find $d^{\prime} \in B$ such that

$$
f_{0}(x)-n\left(x-x_{0}\right) \leq d^{\prime} \leq n\left(x+x_{0}\right)-f_{0}(x) \quad \text { for any } x \in D\left(f_{0}\right)
$$

Putting $d=e d^{\prime}$, we have $e\left(f_{0}(x)-n\left(x-x_{0}\right)\right) \leq d \leq e\left(n\left(x+x_{0}\right)-f_{0}(x)\right)$. On the other hand

$$
\begin{aligned}
& (1-e)\left(f_{0}(x)-n\left(x-x_{0}\right)\right)=f_{0}((1-e) x)-n((1-e) x) \leq 0, \\
& (1-e)\left(n\left(x+x_{0}\right)-f_{0}(x)\right)=n((1-e) x)-f_{0}((1-e) x) \geq 0 .
\end{aligned}
$$

From these three inequalities, we finally get
(7) $\quad f_{0}(x)-n\left(x-x_{0}\right) \leq d \leq n\left(x+x_{0}\right)-f_{0}(x)$ and $e d=d$.

Denote $D\left(h_{0}\right)=B x_{0}+D\left(f_{0}\right)$. Then $a x_{0}+x=0 \quad\left(a \in B, x \in D\left(f_{0}\right)\right)$ implies $a e=0$ and $x=0$. To show this we may assume $a e=a$. If $a=0$, then we can find $e_{1} \in P$ with $e_{1} \leq e$ such that $\left(1-e_{1}\right)+a e_{1}$ has inverse. Then $e_{1} x_{0}=-\left(\left(1-e_{1}\right)+a e_{1}\right)^{-1} x \in D\left(f_{0}\right)$, which contradicts (6^{\prime}).

Thus we can define uniquely

$$
h_{0}(y)=a d+f_{0}(x) \quad \text { for } y=a x_{0}+x \in D\left(h_{0}\right)
$$

It is easy to verify that h_{0} is a B-module homomorphism of $D\left(h_{0}\right)$ into B.

Finally we shall prove that h_{0} is n-bounded. Let $P(x)$ be the proposition that $h_{0}(y) \leq n(y)$ for y in $D\left(h_{0}\right)$. If there exists an orthogonal family $\left(e_{i} ; i \in I\right)$ of projections with l.u.b. 1 such that

$$
h_{0}\left(e_{i} y\right) \leq n\left(e_{i} y\right) \quad \text { for all } i \in I
$$

then we have

$$
\begin{aligned}
h_{0}(y)=\sum_{I} e_{i} h_{0}(y) & =\sum_{I} e_{i} h_{0}\left(e_{i} y\right) \leq \sum_{I} e_{i} n\left(e_{i} y\right) \\
& =\sum_{I} e_{i} n(y)=n(y),
\end{aligned}
$$

which shows that $P(y)$ satisfies (4).
For any non-zero e^{\prime} in P and y in $D\left(h_{0}\right)$, we can find a non-zero $e^{\prime \prime} \leq e^{\prime}$ in P such that $P\left(e^{\prime \prime} y\right)$ is true; that is, $P(y)$ satisfies (5). We shall prove this as follows.
(i) When there exists a non-zero $e^{\prime \prime} \in P$ such that $e^{\prime \prime} \leq e^{\prime}$ and $e^{\prime \prime} a \geq p e^{\prime \prime}$ for a positive number p, we put $b=\left(\left(1-e^{\prime \prime}\right)+e^{\prime \prime} a\right)^{-1}$. By (7), $n\left(b x+x_{0}\right)-f_{0}(b x) \geq d$. Since $e^{\prime \prime} a \geq 0$, we have

$$
e^{\prime \prime} a d \leq e^{\prime \prime} a\left(n\left(b x+x_{0}\right)-f_{0}(b x)\right)=n\left(e^{\prime \prime} x+e^{\prime \prime} a x_{0}\right)-f_{0}\left(e^{\prime \prime} x\right)
$$

or

$$
h_{0}\left(e^{\prime \prime} y\right)=e^{\prime \prime} a d+f_{0}\left(e^{\prime \prime} x\right) \leqq n\left(e^{\prime \prime}\left(x+a x_{0}\right)\right)=n\left(e^{\prime \prime} y\right) .
$$

Thus $P\left(e^{\prime \prime} y\right)$ is true.
(ii) When there exists a non-zero $e^{\prime \prime} \in P$ such that $e^{\prime \prime} \leq e^{\prime}$ and $e^{\prime \prime} a \leq-p e^{\prime \prime}$ for a positive number p, we can show that $P\left(e^{\prime \prime} y\right)$ is true, by the similar method as in (i).
(iii) If both of the cases (i) and (ii) do not hold, then $e^{\prime} a=0$. Hence $h\left(e^{\prime} y\right)=f_{0}\left(e^{\prime} x\right) \leq n\left(e^{\prime} x\right)=n\left(e^{\prime} y\right)$.

Therefore, by Lemma $1, P(y)$ is true; that is, h_{0} is n-bounded.
Thus we have $\left(h_{0}, D\left(h_{0}\right)\right) \in R$ and $\left(h_{0}, D\left(h_{0}\right)\right) \geq\left(f_{0}, D\left(f_{0}\right)\right)$. By the maximality of ($f_{0}, D\left(f_{0}\right)$), we have $D\left(h_{0}\right)=D\left(f_{0}\right)$ and so $x_{0} \in D\left(f_{0}\right)$, which contradicts the assumption that $x_{0} \notin D\left(f_{0}\right)$.
q.e.d.
4. We state some applications of Theorem 1 . Let M be a B^{*} algebra with unit 1 and A be a commutative $A W^{*}$-algebra. We assume that
(8) A is the B^{*}-subalgebra of the center of M and $1 \in A$.

We shall denote by $N($ or $B)$ the totality of self-adjoint elements in M (or A). If we define as usual that $x \geq 0(x \in N)$ if and only if x has non-negative spectra, then N is a semi-ordered vector space (cf. Fukamiya [1]) and the induced ordering in $B \subseteq N$ is coincident with the ordering stated in §1.

According to Nakamura and Turumaru [4], an expectation e is a mapping of M satisfying

$$
\begin{gather*}
e(\alpha x+\beta y)=\alpha e(x)+\beta e(y), \tag{9}\\
e\left(x^{*}\right)=e(x)^{*}, \tag{10}\\
x \geq 0 \quad \text { implies } \quad e(x) \geq 0, \tag{11}\\
e(e(x) y)=e(x) e(y), \tag{12}\\
e(1)=1 ; \tag{13}
\end{gather*}
$$

and we denote by $E(M, A)$ the totality of expectations on M such that $e(M)=A$. If $e \in E(M, A)$, then $e(\alpha x)=\alpha e(x)(\alpha \in A)$. In the case when A is the complex number field $C, E(M, C)$ is the state space of M.
5. We define

$$
\begin{equation*}
n(x)=\text { g.l.b. }(a ; a \in B, x \leq a) \quad \text { for } x \text { in } N \tag{14}
\end{equation*}
$$

The g.l.b. is taken in B. Noticing that $x \geq 0$ implies $e x \geq 0$ and g.l.b. $e x_{i}=e\left(\right.$ g.l.b. $\left._{i} x_{i}\right)$ in $B\left(e \in P, x, x_{i} \in B\right)$, we can easily verify that

Lemma 2. (a) $n(x)$ is an n-mapping on N considered as B module. (b) $\|n(x)\| \leq\|x\|$. (c) $n(0)=0, n(1)=-n(-1)=1$.

We shall call this n-mapping canonical.
Lemma 3. $n(y)=0(y \in N, y \geq 0)$ implies $y=0$ if and only if
(15) for the orthogonal system ($e_{i} ; i \in I$) of projections in A with l.u.b. 1, $e_{i} x=0$ for all i implies $x=0(x \in M)$.

Proof. The proof of necessity is as follows. Suppose $e_{i} x=0$ for all $i \in I$, then $e_{i} n\left(x x^{*}\right)=n\left(e_{i} x x^{*}\right)=0$ for all $i \in I$. Since (15) holds for $x \in A$, we have $n\left(x x^{*}\right)=0$ and so $x x^{*}=0$. Thus $x=0$.

To prove the sufficiency, suppose $n(y)=0(y \in N, y \geq 0)$. Let m be $1,2, \cdots$ and $P_{m}(y)$ be the proposition that $1 / m-y \geq 0$. As $(a ; a \in B, y \leq a)$ forms decreasing directed nets with ordered limit 0 , so we can find for any non-zero projection e in B a non-zero projection $e^{\prime} \leq e$ in B and a in B with $y \leq a$ such that $\left\|e^{\prime} a\right\| \leq 1 / m$ or $e^{\prime} a \leq 1 / m$ (cf. Widom [6]). This proves that $P_{m}\left(e^{\prime} y\right)$ is true.

Let ($e_{i} ; i \in I$) be the family of orthogonal projections in B with l.u.b. 1 such that $P_{m}\left(e_{i} y\right)$ is true for all $i \in I$ and $1 / m-y=z-w$, where z (or w) is the positive (or negative) part of $1 / m-y$, then $e_{i} z$ (or $e_{i} w$) is the positive (or negative) part of $e_{i}(1 / m-y)$ and hence $e_{i} w=0$ for all $i \in I$. From (15), $w=0$ and, hence, $P_{m}(y)$ is true.

By Lemma 1, we get $P_{m}(y)$ is true for all m, that is, $0 \leq y \leq 1 / m$. Thus $y=0$. This completes the proof.

We can easily verify
Lemma 4. An A-module homomorphism e of M into A is in $E(M, A)$ if and only if e is n-bounded with respect to the canonical n on N.
6. We shall say that a commutative $A W^{*}$-algebra A with (8) is regularly imbedded in M if (15) is satisfied. Obviously C is always regularly imbedded. When M itself is an $A W^{*}$-algebra and A is an $A W^{*}$-subalgebra with (8), A is regularly imbedded.

Now we state
Theorem 2. In order that $E(M, A)$ is total, that is, $e\left(x x^{*}\right)=0$ for all e in $E(M, A)$ and x in M implies $x=0$, it is necessary and sufficient that A is regularly imbedded in M.

Proof. If $E(M, A)$ is total, then we can find an $A W^{*}$-module H over A on which M acts as a uniformly closed operator algebra (cf. Widom [6]). From this (15) follows immediately.

To prove the sufficiency, we have only to construct $e_{y} \in E(M, A)$ such that $e_{y}(y) \neq 0$ for any y in N with $y \geq 0, \neq 0$. Let $N_{0}=B y$. Put $e^{\prime}(a y)=a n(y)(a \in B, n$ the canonical n-mapping). If $a y=0$, then

$$
\begin{aligned}
\left\|e^{\prime}(a y)\right\|^{2} & =\left\|\left(e^{\prime}(a y)\right)\left(e^{\prime}(a y)\right)^{*}\right\|=\left\|a^{*} a n(y) n(y)^{*}\right\| \\
& =\left\|n\left(a^{*} a y\right) n(y)^{*}\right\|=0,
\end{aligned}
$$

or $e^{\prime}(a y)=0$. Thus e^{\prime} is a uniquely defined B-module homomorphism.
Let $e_{1}, e_{2} \in P$ be $e_{1}+e_{2}=1, e_{1} e_{2}=0$ and $e_{1} a \geq 0, e_{2} a \leq 0$. From (2) and $-n(-y) \leq n(y)$, we have
$e_{1} e^{\prime}(a y)=e_{1} a n(y)=n\left(e_{1} a y\right)=e_{1} n(a y)$,
$e_{2} e^{\prime}(a y)=e_{2} a n(y)=-\left(-e_{2} a\right) n(y)=-n\left(-e_{2} a y\right) \leq n\left(e_{2} a y\right)=e_{2} n(a y)$.
Thus we get $e^{\prime}(a y) \leq n(a y)$, that is, e^{\prime} is n-bounded. By Theorem 1, e^{\prime} is extendible to the whole N preserving n-boundedness, say e. Since $w \in M$ is decomposed uniquely as $w=w_{1}+i w_{2}\left(w_{1}, w_{2} \in N\right)$, we can define $e_{y}(w)=e\left(w_{1}\right)+i e\left(w_{2}\right)$. Then e_{y} is an A-module homomorphism and n bounded on N. By Lemma 4, $e_{y} \in E(M, A)$. By Lemma 3, $e_{y}(y)=n(y)$ $\neq 0$.
q.e.d.
7. A mapping of M with (9)-(12) is called a quasi-expectation (cf. [4]). We denote by $Q E(M, A)$ the totality of quasi-expectations on M such that $e(M)=A$. We also denote by $H(M, A)$ the totality of A-module homomorphisms of M into A which are continuous in the norm topology.

Theorem 3. If A is regularly imbedded in M, then $H(M, A)$ is spanned algebraically by $Q E(M, A)$.

Proof. Our proof is a modification of that by Takeda [5] in the case $A=C$.

Let f be a B-module homomorphism of N into B with $\|f(x)\|$ $\leq\|x\|$. To establish our theorem it is sufficient to prove that f is the difference of the two positiveness-preserving B-module homomorphisms.

Put $S=Q E(M, A)$. We denote by $m(S)$ the set of all B-valued functions $x(s)$ with $(x(s) ; s \in S)$ is bounded. $m(S)$ is a B-module with the obvious n-mapping

$$
n(x)=\text { l.u.b. }\left(\left(x(s) x(s)^{*}\right)^{1 / 2} ; s \in S\right)
$$

We define a semi-order $x \geq 0$ in $m(S)$ by $x(s) \geq 0$ for all $s \in S$.
As is easily seen, N is embedded in $m(S)$ by the correspondence $x \rightarrow x(s) \equiv s(x) \in m(S)$ for x in N. By Theorem $2, M$ can be considered as acting on an $A W^{*}$-module over A. Using this fact, we can show that (α) the induced ordering in N by $m(S)$ is coincident with the original one in N, and that $(\beta)\|x\|=\|n(x)\|$, modifying the usual proof in the scalar case.

As B is a lattice, we can conclude that
(16) $m(S)$ forms a lattice whose operations are compatible with the B-module operations.

On the other hand, $\|f(x)\| \leq\|x\|$ implies $f(x) \leq n(x)$. In fact, let a be an arbitrary invertible element in B such that $n(x) \leq a$, then $\left\|f\left(a^{-1} x\right)\right\| \leq\left\|a^{-1} x\right\|=\left\|n\left(a^{-1} x\right)\right\|=\left\|a^{-1} n(x)\right\| \leq 1$. From this we have
$f\left(a^{-1} x\right)=\alpha^{-1} f(x) \leq 1$ or $f(x) \leq a \downarrow n(x)$. Thus f is n-bounded on N and, by Theorem 1, it can be extended to whole $m(S)$ preserving n boundedness. We denote it again by f. As $x \geq y \geq 0$ in $m(S)$ implies $n(x) \geq n(y) \geq f(y)$, we can define for $x \geq 0$

$$
e_{1}(y)=\text { l.u.b. }(f(y) ; x \geq y \geq 0, y \in m(S))
$$

By (16) we can apply the known argument in the theory of vector lattices to prove that e_{1} is extendible to the whole $m(S)$ naturally. Let

$$
e_{2}(x)=e_{1}(x)-f(x) \quad(x \in m(S))
$$

It is not so hard to see that e_{1} and e_{2} are B-module homomorphisms of $m(S)$ and hence of N. By definition, it is also easy to see that $e_{i}(x) \geq 0(i=1,2)$ for $x \geq 0$ in $m(S)$. Thus, the restriction of e_{i} on N gives the desired decomposition $f=e_{1}-e_{2}$. q.e.d.

Remark. Let M be a B^{*}-algebra with or without the unit and A be an $A W^{*}$-algebra being commutative but not necessarily contained in M.

Theorems 2 and 3 are extended to the case when A satisfies (15) and the following condition instead of (8):
($\left.8^{\prime}\right) \quad M$ is an associative algebra over A with $a(x y)=(a x) y=x(a y)$ and $\|a x\| \leq\|a\|\|x\|(a \in A, x, y \in M)$.

References

[1] M. Fukamiya: On a theorem of Gelfand and Neumark and the B^{*}-algebra, Kumamoto J. Sci., 1, 17-22 (1952).
[2] I. Kaplansky: Projections in Banach algebras, Ann. Math., 53, 235-249 (1951).
[3] -: Algebras of type I, Ann. Math., 56, 460-472 (1952).
[4] M. Nakamura and T. Turumaru: Expectations in an operator algebra, Tôhoku Math. J., 6, 182-188 (1954).
[5] Z. Takeda: Conjugate spaces of operator algebras, Proc. Japan Acad., 30, 90-95 (1954).
[6] H. Widom: Embedding in algebras of type I, Duke Math. J., 23, 309-324 (1956).

