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95. Some Expectations in AW*.algebras

By Mitsuru NAKAI
Mathematical Institute, Nagoya University

(Comm. by K. KUNUGI, M.J.A.., July 12, 1958)

1. Let A be a commutative A W*-algebra (el. [2). We denote
by B and P the totality of self-adjoint elements and projections in A,
respectively. It is well known that A is isometrically isomorphic to
the space C(S) of all complex-valued continuous functions on a Stonean
space S. In this representation, B (or P) is the totality of real-valued
(or characteristic) functions in C(S)which forms a conditionally com-
plete vector lattice (or complete lattice) by the usual ordering in C(S).

Let M be a left module over B. We shall call a mapping n of
M into B an n-mapping on M if n satisfies

1 n(x+y)

_
n(x) +.n(y) (x, y M),

2 n(ax)--an(x) (x M, a A with a>_ 0).
If a mapping f of a subset D(f) of M into B satisfies
( 3 --n(--x)

_
f(x)

_
n(x),

then we call f to be n-bounded. In the case when f is additive and
when D(f) is an additive subgroup of M, we can replace (3) by the
inequality: f(x)_n(x).

2. For convenience, we state a simple lemma which is easily
verified.

Lemma 1. Let M be a left module over (not necessarily com-
mutative) A W*-algebra L and P(x) be a proposition concerning the
element x in M. Suppose that the following two conditions are satis-
fied:

(4) If there exists a family (e; i eI) of orthogonal projections
in L with 1.u.b. 1 such that all P(ex) are true, then P(x) is true.

(5) For any projection e in L which is not zero, we can find
a non-zero projection e’ in L such that e’_ e and P(e’x) is true. Then
P(x) is true.

3. Now we state an extension theorem of Hahn-Banach type.
Theorem 1. Let M be a left module over B with n-mapping n.

Given an n-bounded B-module homomorphism of a B-submodule of M
into B, it can be extended to an n-bounded B-module homomorphism
of M into B.

Proof. Let h be an n-bounded B-module homomorphism of a
submodule D(h) of M. Let R be the set of all couples (f, D(f)), where
f is an n-bounded B-module homomorphism of a submodule D(f) of
M containing D(h) into B such that f--h on D(h). If we define
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(f, D(f))>_ (f2, D(f.)) by the relation that D(f)
_
D(f) and f--f2 on

D(f), then R is inductively ordered and by Zorn’s lemma there exists
a maximal element (f0, D(fo)).

We shll prove that D(fo)---M. Contrary to the assertion, sup-
pose the existence of a non-zero element Xo in M--D(fo). Then we can
find a non-zero e in P satisfying the condition

6 for every non-zero e’ e P with e’_e, we have e’xoC.D(fo). For,
otherwise, taking as P(x), the proposition that x is in D(fo), we see
that P(x’) satisfies (5). Moreover P(x) stisfies (4) fo all x in M. In
fact, if there is an orthogonal family (e; i e I) with 1.u.b. 1 such that
eixe D(fo) for all i, then we can define

go(Y) , eifo(ey) (Y D(go)-Bx-D(fo)),
where the right side denotes the unique element weB such that
ew--efo(ey) for all 3" (cf. Kaplansky 3J). It is easy to show that
(go, D(go)) R and (go, D(go)) >_ (fo, D(fo)). By the maximality of (fo,
D(fo)), we have D(go)--D(fo); hence P(x) is true. Thus, by Lemma 1,
P(xo) is true; that is, x0 D(fo) which is a contradiction.

Put Xo--exo, then we have
(6’) Xo-eXo and e’xoD(fo) for any non-zero e’ in PP. For any

x, xeD(fo), using (1) and (3), we have

fo(X)--n(x--Xo)g n(x+Xo)-- f(x.).
By the conditionally completeness of B, we can find d’ e B such that

fo(x)--n(X--Xo)_d’ gn(X+Xo)--fo(x) for any xeD(fo).
Putting d--ed’, we have e(fo(x)--n(X--Xo))gd_e(n(X+Xo)--fo(x)). On
the other hand

(1 e)(fo(X) n(x Xo)) --f0((1 e)x) n((1 e)x)

_
O,

(1 --e)(n(x -+- Xo)- .to(x))-- n((1 --e)x)-fo((1 e)x)

_
O.

From these three inequalities, we finally get
( 7 ) fo(x)--n(X--Xo)_d_n(X+Xo)--fo(X) and ed=d.
Denote D(ho)--Bxo+D(fo). Then aXoWX--O (aeB, xeD(fo)) im-

plies ae--O and x--0. To show this we may assume ae=a. If a--0,
then we can find eeP with e_<e such that (1--e)-+-ae has inverse.
Then elXo----((1--el)+ae,)-lxeD(fo), which contradicts (6’).

Thus we can define uniquely

ho(y)=ad+fo(x) for y=axo+xD(ho).
It is easy to verify that h0 is a B-module homomorphism of D(ho)
into B.

Finally we shall prove that h0 is n-bounded. Let P(x) be the
proposition that ho(y)g n(y) for y in D(ho). If there exists an orthogonal
family (e; i e I) of projections with 1.u.b. 1 such that

ho(ey)

_
n(ey) for all i e/,

then we have
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ho(y)-- x etho(y)-- eho(eiy)

_
x ein(eiy)

en(y)--n(y),
which shows that P(y) satisfies (4).

For any non-zero e’ in P and y in D(ho), we can find a non-zero
e"_<e’ in P such that P(e"y) is true; that is, P(y) satisfies (5). We
shall prove this as follows.

(i) When there exists a non-zero e"eP such that e"_e’ and
e"a_pe" for a positive number p, we put b-((1--e")+e"a) -1. By (7),
n(bx+Xo)--fo(bx) >_ d. Since e"a

_
O, we have

e"ad

_
e"a(n(bx+Xo) fo(bx)) n(e"x-e"aXo) fo(e"x)

or
ho(e"y) e"ad+fo(e"x) n(e"(x+ aXo)) n(e"y).

Thus P(e"y) is true.
ii ) When there exists a non-zero e" e P such that e"_< e’ and

e"a<_--pe" for a positive number p, we can show that P(e"y) is true,
by the similar method as in (i).

(iii) If both of the cases (i) and (ii) do not hold, then e’a--O.
Hence h(e’y)=fo(e’x)_ n(e’x)=n(e’y).

Therefore, by Lemma 1, P(y) is true; that is, h0 is n-bounded.
Thus we have (h0, D(ho)) e R and (h0, D(ho))>_ (fo, D(fo)). By the

maximality of (f0, D(fo)), we have D(ho)--D(fo) and so x0 e D(fo), which
contradicts the assumption that xo6D(fo), q.e.d.

4. We state some applications of Theorem l. Let M be a B*-
algebra with unit 1 and A be a commutative A W*-algebra. We
assume that

8 A is the B*-subalgebra of the center of M and 1 e A.
We shall denote by N (or B)the totality of self-adjoint elements in

M (or A). If we define as usual that x_>0 (x e N) if and only if x has
non-negative spectra, then N is a semi-ordered vector space (cf.
Fukamiya [1)and the induced ordering in BN is coincident with
the ordering stated in 1.

According to Nakamura and Turumaru [4, an expectation e is
a mapping of M satisfying

9 e(ax+ly)--ae(x)+e(y),
(10) e(x*)--e(x)*,
(11) x>_O implies e(x)_O,
(12) e(e(x)y) e(x)e(y),

and we denote by E(M,A) the totality of expectations on M such
that e(M)--A. If e E(M, A), then e(ax)--ae(x) (a A). In the case
when A is the complex number field C, E(M, C) is the state space
of M.

5. We define
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(14) n(x).-g.l.b.(a;aeB, x<_a) for x in N.
The g.l.b, is taken in B. Noticing that x>_0 implies ex>_O and
g.l.b.,ex,=e(g.l.b.,x,) in B (eP, x, x,B), we can easily verify that

Lemma 2. (a) n(x) is an n-mapping on N considered as B-
module. (b) l! n(x)Ii <-II x !1. (c) n(0)=0, 1)-- 1.

We shall call this n-mapping canonical.
Lemma 3. n(y)=0 (yN, y>_O) implies y=0 if and only if
(15) for the orthogonal system (e; i e I) of projections in A with

1.u.b. 1, ex-O for all i implies x=0 (xeM).
Proof. The proof of necessity is as follows. Suppose ex=O for

all i eL then en(xx*)-n(exx*)-O for all i eL Since (15) holds for
x e A, we have n(xx*) 0 and so xx*- O. Thus x- 0.

To prove the sufficiency, suppose n(y)-O (yeN, y>_O). Let m be
1, 2,..- and P(y) be the proposition that1O. As (a; a e B, y_< a)
forms decreasing directed nets with ordered limit 0, so we can find
for any non-zero projection e in B a non-zero projection e’_<e in B
and a in B with y<_a such that ]le’all<_l/m or e’a<_l/m (cf. Widom

e’[6J). This proves that P,(y) is true.
Let (e; iI) be the family of orthogonal projections in B with

1.u.b. 1 such that P(ey) is true for all i e I and l/m--y-z--w, where
z (or w) is the positive (or negative) part of1 then ez (or ew)
is the positive (or negative) part of e(1/m--y) and hence ew-O for
all i/. From (15), w=0 and, hence, P(y) is true.

By Lemma 1, we get P(y) is true for all m, that is, O<_ygl/m.
Thus y--0. This completes the proof.

We can easily verify
Lemma 4. An A-module homomorphism e of M into A is in

E(M, A) if and only if e is n-bounded with respect to the canonical
nonN.

6. We shall say that a commutative A W*-algebra A with (8)is
regularly imbedded in M if (15) is satisfied. Obviously C is always
regularly imbedded. When M itself is an A W*-algebra and A is an
A W*-subalgebra with (8), A is regularly imbedded.

Now we state
Theorem 2. In order that E(M, A) is total, that is, e(xx*)--O

for all e in E(M, A) and x in M implies x-O, it is necessary and
sufficient that A is regularly imbedded in M.

Proof. If E(M,A) is total, then we can find an A W*-module
H over A on which M acts as a uniformly closed operator algebra
(cf. Widom [6J). From this (15) follows immediately.

To prove the sufficiency, we have only to construct ee E(M, A)
such that %(y)O for any y in N with y>_0, 4=0. Let No--By. Pt{t
e’(ay)-.an(y) (aeB, n the canonical n-mapping). If ay=O, then
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I[ e’(ay) ll- ll (e’(ay))(e’(ay))* I!- ii a*an(y)n(y)* [i
-= II n(a*ay)n(y)* II ,-0,

or e’(ay)=O. Thus e’ is a uniquely defined B-module homomorphism.
Let e,e.eP be e+e-l, ee.=0 and ea>_O, ea_O. From (2)

and --n(--y)_n(y), we have
ee’(ay) ean(y) n(eay) en(ay),
e.e’(ay) e.an(y) ea)n(y) n( --e.ay)

_
n(eay) e.n(ay).

Thus we get e’(ay)_n(ay), that is, e’ is n-bounded. By Theorem 1,
e’ is extendible to the whole N preserving n-boundedness, say e. Since
wM is decomposed uniquely as w-w-iw (w, w.eN), we can define
%(w)-e(w)+ie(w). Then e is an A-module homomorphism and n-
bounded on N. By Lemma 4, %eE(M, A). By Lemma 3, %(y)--n(y)
0. q.e.d.

7. A mapping of M with (9)-(12) is called a quasi-expectation
(cf. [_4J). We denote by QE(M, A) the totality of quasi-expectations
on M such that e(M)-A. We also denote by H(M, A) the totality
of A-module homomorphisms of M into A which are continuous in the
norm topology.

Theorem 3. If A is regularly imbedded in M, then H(M, A) is
spanned algebraically by QE(M, A).

Proof. Our proof is a modification of that by Takeda 5 in the
case A--C.

Let f be a B-module homomorphism of N into B with !1 f(x)I!
<-ll x ll. To establish our theorem it is sufficient to prove that f is
the difference of the two positiveness-preserving B-module homo-
morphisms.

Put S-QE(M, A). We denote by re(S) the set of all B-valued
functions x(s) with (x(s); s eS) is bounded, m(S) is a B-module with
the obvious n-mapping

n(x)--1.u.b.((x(s)x(s)*)/; s S).
We define a semi-order x>_0 in re(S) by x(s)>_O for all sS.
As is easily seen, N is embedded in re(S) by the correspondence

x--->x(s)-----s(x)m(S) for x in N. By Theorem 2, M can be considered
as acting on an AW*-module over A. Using this fact, we can show
that (a) the induced ordering in N by re(S) is coincident with the
original one in N, and that () Ilxll--[ln(x)!1, modifying the usual
proof in the scalar case.

As B is a lattice, we can conclude that
(16) re(S) forms a lattice whose operations are compatible with

the B-module operations.
On the other hand, II f(x)II <-!! x il implies f(x)<_ n(x). In fact, let

a be an arbitrary invertible element in B such that n(x)<_a, then
]] f(a-x) !!--]1 a-x I]--]] n(a-x) I1--11 a-n(x) ]]_<1. From this we have
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f(a-lx)=a-lf(x).l or f(x)<_a , n(x). Thus f is n-bounded on N and,
by Theorem 1, it can be extended to whole re(S) preserving n-
boundedness. We denote it again by f. As x>_y>_0 in re(S) implies
n(x) >_ n(y) >_ f(y), we can define for x >_ 0

e(y)-l.u.b.(f(y); x_y_ O, y m(S)).
By (16) we can apply the known argument in the theory of vector

lattices to prove that e is extendible to the whole re(S) naturally.
Let

e.(x)=e(x)-- f(x) (x m(S)).
It is not so hard to see that e and e. are B-module homomorphisms
of re(S) and hence of N. By definition, it is also easy to see that
e(x)_O (i-1,2) for x>_0 in re(S). Thus, the restriction of e on N
gives the desired decomposition f--e-e, q.e.d.

Remark. Let M be a B*-algebra with or without the unit and
A be an A W*-algebra being commutative but not necessarily con-
tained in M.

Theorems 2 and 3 are extended to the case when A satisfies (15)
and the following condition instead of (8):

(8’) M is an associative algebra over A with a(xy)--(ax)y--x(ay)
and Ilaxi]_lla]] llxli (aA, x,yM).

References

[1] M. Fukamiya: On a theorem of Gelfand and Neumark and the B*-algebra,
Kumamoto J. Sci., 1, 17-22 (1952).

[2] I. Kaplansky: Projections in Banach algebras, Ann. Math., 53, 235-249 (1951).
[3J --: Algebras of type I, Ann. Math., 56, 460-472 (1952).
[4J M. Nakamura and T. Turumaru: Expectations in an operator algebra, TShoku

Math. J., 6, 182-188 (1954).
[5J Z. Takeda: Conjugate spaces of operator algebras, Proc. Japan Acad., 30, 90-95

(1954).
[6] H. Widom: Embedding in algebras of type I, Duke Math. J., 23, 309-324 (1956).


