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118. Notes on Lattices

By Koichi ATSUMI
Gunma University, Maebashi

(Comm. by K. KUNUGI, M.J.A., Oct. 13, 1958)

Let L be a lattice with an inclusion relation , meet a,-,b and
join ab. L.M. Blumenthal and D. O. Ellis [2 showed that the follwing
three relations (G), (G*) and (G**) are equivalent in modular lattices,
and that they are also equivalent to metric betweeness for normed
lattices.
G (ac)(bc)-c-(ac).(bc)
G* ) (ac)(bc)-c-c(ab)

(G**) (ac)(bc)-c-c(ab)
Recently, Y. Matsushima 3 introduced for any lattice L three

kinds of sets in L as follows: *)

J(a, b)-{x x-(ax)(bx)}
CJ(a, b)-{x x-(ax)(bx)}
B(a, b)--J(a, b) A CJ(a, b).

He gave among others a characterization of distributive lattices by
using B(a, b), and a characterization of modular lattices by using B(a, b)
and B*(a, b) in 3, 4.

In this note we give some characterizations of modular lattices by
J(a,b) and CJ(a, b), which also imply that (G), (G*)and (G**) are
equivalent only in modular lattices. We also give two characterizations
of distributive lattices by using J(a, b) and CJ(a, b)respectively, each
of which is the dual of the other.

LEMMA 1. If (a, b) is a modular pair 1, p. 100J, then [ab, bJ
is contained in CJ(a, b).

PROOF. Choose x from [ab, b; then xb and (xa)(xb)
=(x’a)b--x(ab) since (a, b) is a modular pair. While abx,
we have (xa)(xb)-x. This shows that [ab, b_CJ(a, b).

LEMMA 2. If [ab, b is contained in CJ(a, b), then (a, b) is a
roodular pait.

PROOF. Let xb, and consider x(ab). Then abx(ab)
b and hence by assumption x(ab)eCJ(a, b). Hence x(ab)--
(x(ab)a)(x(ab)b)--(xa)(xb)-(xa)b. This shows
that (a, b) is a modular pair.

LEMMA 2’. If [b, abJJ(a, b) for any two elements a and b,
then L is a modular lattice.

*) We denote the set-theoretical inclusion and intersection by c and A. We also
use [a), (aJ and [a, bJ for {xlax}, {x]xa} and [x ]axb} respectively.
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PROOF. For xz, and any y, we consider (xy)z. Then x
(xy)zyx, and hence we have (xy)-zeJ(y, x) by assumption.
Consequently (xy) z ((x y)zy) ((x y)zx) (z y)

LEMMA 3. In a modular lattice L, we have J(a,b)/[ab
CJ(a, b) for any two elements a and b.

PROOF. Let c be in J(a, b)A [ab). Then (ac)(cb)-c(a
(cb)) by modularity, and a (cb) a((ac) (cb)b) since
cJ(a, b), and hence we have a(cb)--a((ac)b)-(ac)(ba)
by using modularity again. Consequently (ac)(cb)-c(ac)
(ba)=c(ba)=c since abc. This shows that c is in CJ(a, b),
and J(a, b)/ [ab) CJ(a, b).

LEMMA 3’. In a modular lattice, we have CJ(a,b) A (abJ(a,b)
for any two elements a and b.

PROOF. If c iS in CJ(a, b) A (ab_, we have c-(ac)(cb) and
cb--(ac)(cb)b--(ac)b. Using modularity and this relation,
we have (ac)(cb)--(a(c-b))c--(a((ac)b))c--(ab)
(ac)c--(ab)c. Since cab, we have (ac)(cb)-c. This
shows that ceJ(a, b) and CJ(a, b)/ (abJ(a, b).

REMARKS. Let us consider a lattice P={p, q, r, s and d} such that
pq<r<s, p<d<s, qd--rd--p, and qd--rd-s.
1 It, drJ(d, r), but (d, r) is not a modular pair, since q(dr)
(q.d)r.
2 (r, d) is a modular pair, and qeJ(r, d) A [rAg) but qCJ(r, d).

( 3 (q, d) is a modular pair, and reCJ(q, d)/ (qd but r is not in
J(q, d).

THEOREM 1. A necessary and sucient condition for L to be a
a modular lattice is that J(a, b) [ab)CJ(a, b) for every pair a
and b.

PROOF. If L is a modular lattice, then J(a, b)A [ab)CJ(a, b)
by Lemma 3. If J(a, b)/ [ab)CJ(a, b), we have [ab, bCJ(a, b)
since [ab, bJ(a, b) in any lattice. Hence L is a modular lattice
by Lemma 2.

THEOREM 1’. A necessary and sufficient condition for L to be
modular lattice is that CJ(a,b)A(abJ(a,b) for every pair a
and b.

PROOF. If L is modular, we have CJ(a, b) A(abJ(a, b) by
Lemma 3’. If CJ(a, b)/ (abJ J(a, b), we have [b, abJ(a, b)
since [b, abCJ(a, b) in any lattice. Consequently L is a modular
lattice by Lemma 2’.

COROLLARY. (G), (G*) and (G**) are equivalent if and only if
L is a modular lattice.

PROOF. In any lattice, if c satisfies (G), then c is in J(a, b)A
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CJ(a,b). Hence abcab [3, Theorem 1 and c satisfies (G*)
and (G**). Let L be a modular lattice. If c satisfies (G*), then c is
in J(a, b) A ab)CJ(a, b) and c satisfies (G); if c satisfies (G**),
then c is in CJ(a, b)/ (abJ(a, b), and c satisfies (G). Thus we
have shown that (G), (G*), (G**) are equivalent in a modular lattice.
Conversely, let (G) and (G*) be equivalent in L. Then we have J(a, b) A
ab)CJ(a, b) for every pair a and b, and hence by Theorem 1 L
is a modular lattice. If (G) and (G**) are equivalent in L, we have
CJ(a,b) A(abJ(a, b) for every pair a and b, and hence by Theo-
rem 1’ L is a modular lattice. If (G*)and (G**)are equivalent in L,
we have J(a, b) A ab)CJ(a, b) and CJ(a, b) A(abJ(a, b) for
every pair a and b, and L is a modular lattice.

THEOREM 2. A necessary and sucient condition for L to be a
distributive lattice is that J(a, b) be an ideal for every pair a and b.
In this case we have J(a, b)-(ab.

PROOF. In any lattice, J(a,b)(ab 3, Theorem 1] and for
any two elements x and y in J(a,b), xy is also in J(a,b) [3, p.

549. Let L be a distributive lattice and zt, teJ(a,b). Then (za)
(x.b)-x(ab)-x, and eJ(a, b). This shows that J(a, b) is an
ideal. If J(a, b) is an ideal, J(a, b)-(ab since J(a, b) contains ab.
Conversely, let J(a,b) be an ideal. Then J(a,b)-(ab. For any
elements x, a and b in L, we have x(ab)eJ(a, b). Hence z(ab)
--((ab)a)(x(ab)b)=(a)(xb). This means that L
is a distributive lattice.

Dually we have the following
THEOREM 2’. For any pair a and b, CJ(a, b) is a dual ideal if

and only if L is a distributive lattice. In this case we have CJ(a, b)
--ab).
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