4. On a Theorem on Modular Lattices

By Yuzo Utumi
Osaka Women's University
(Comm. by K. Shoda, M.J.A., Jan. 12, 1959)

1. It is well known that an irreducible, complete, (upper and lower) continuous, complemented modular lattice L is finite-dimensional if and only if the following condition is satisfied ${ }^{1{ }^{1}}$

Condition $4 . L$ contains no infinite sequence (a_{i}) of nonzero elements $a_{i}, i=1,2, \cdots$, such that for every $i>1$ there exists an element b_{i} satisfying $a_{i-1} \geq a_{i} \dot{\cup} b_{i}{ }^{2}$ and $a_{i} \approx b_{i}$.

The purpose of the present paper is to prove the following theorem. By $m(L)$ we denote the least upper bound of all integers r such that L contains an independent system of mutually projective nonzero r elements.

Theorem. For any complete upper continuous modular lattice L the condition Δ is equivalent to each of the following two conditions:

Condition M. $m(L)$ is finite.
Condition F. There is no independent countable subset $\left(a_{i}\right)$ such that $a_{i} \succsim a_{i+1} \neq 0$ for every $i .^{3)}$

As a consequence of this we shall obtain
Corollary 1. Let \Re be a semisimple ring with unit element and assume that \Re-left (-right) module \Re is injective. Then \Re is a regular ring (in the sense of v. Neumann), and the following three conditions are equivalent:
(i) $\mathfrak{\Re}$ is of bounded index.
(ii) \Re / \mathcal{F} is a simple ring with minimum condition for every primitive ideal \mathfrak{P}.
(iii) \mathfrak{R} is P-soluble. ${ }^{4)}$

In this case, \mathfrak{R}-right (-left) module \Re is also injective.
2. Henceforth L always will denote a modular lattice with zero.

Lemma 1. Let $a \bigcap b=a \bigcap c=0$ and $a \cup b \geq c$. Then $(a \cup c) \bigcap b \sim_{a} c .{ }^{5)}$
Lemma 2. If $0 \neq a \leq b=b_{1} \dot{U} b_{2} \dot{\cup} \cdots \dot{U} b_{n}$, then there exist nonzero a^{\prime}, b^{\prime} such that $a \geq a^{\prime} \sim b^{\prime} \leq b_{i}$ for some i.

In fact, if $a \bigcap\left(b_{2} \cup \cdots \cup b_{n}\right)=0$, then $b_{1} \cap\left(a \cup b_{2} \cup \cdots \cup b_{n}\right) \sim a$ by Lemma 1; hence Lemma 2 follows by induction.

1) See [7].
2) \dot{U} denotes the join of independent elements.
3) By $a \succsim b$ we mean the existence of c such that $a \geq c \approx b$.
4) See [5].
5) $b \sim_{a} c$ is meant that $a \dot{\cup} b=a \cup \cup($.

We denote $m(L(0, a))$ for the interval $L(0, a)$ of L by $m(a)$.
Lemma 3. If $a \bigcap b=0$, then $m(a \cup b) \leq m(a)+m(b)$.
Proof. If either $m(a)$ or $m(b)$ is ∞ or 0 , Lemma is obvious. Let $0<m(a), m(b)<\infty$. Suppose $a \dot{U} b \geq x_{1} \dot{U} \cdots \dot{U} x_{u}$ where $u=m(a)+m(b)+1$ and $x_{i} \approx x_{j} \neq 0$ for every i, j. If, say, $x_{1} \cap b \neq 0$, then we replace x_{1} by $x_{1} \bigcap b$ and each of the other x_{i} by a suitable element which is contained in it and projective to $x_{1} \cap b$. Repeating this process we may assume without loss of generality that $x_{i} \cap b=0$ or $x_{i} \leq b$ for every i. Let $x_{j} \bigcap b=0, j=1, \cdots, r$, and $x_{k} \leq b, k=r+1, \cdots, u$. If $r=0$, then $u \leq m(b)$, a contradiction. Hence $r>0$. Set $\left(x_{j} \cup b\right) \cap a \equiv x_{j}^{\prime}, j=1, \cdots, r$. By Lemma $1, x_{j}^{\prime} \approx x_{j}$. If $\perp\left(x_{1}^{\prime}, \cdots, x_{r}^{\prime}\right)$ we have a contradiction since it follows from this that $\perp\left(x_{1}^{\prime}, \cdots, x_{r}^{\prime}, x_{r+1}, \cdots, x_{u}\right)$ and $u \leq m(a)+m(b)$. Thus, $\perp\left(x_{1}^{\prime}, \cdots, x_{p}^{\prime}\right)$ and not $\perp\left(x_{1}^{\prime}, \cdots, x_{p_{+1}}^{\prime}\right)$ for some p. Since $b \dot{U} x_{j}$ $=b \dot{U} x_{j}^{\prime}$ by Lemma 1 , if $\perp\left(b, x_{1}, \cdots, x_{p+1}\right)$ we see that $\perp\left(b, x_{1}^{\prime}, \cdots, x_{p_{+1}}^{\prime}\right)$ and $\perp\left(x_{1}^{\prime}, \cdots, x_{p_{+}}^{\prime}\right)$ which is a contradiction. Hence $f \equiv b \cap\left(x_{1} \cup \cdots \cup\right.$ $\left.x_{p+1}\right) \neq 0$. By Lemma 2 there exist mutually projective nonzero \bar{f}, \bar{x}_{j}, $j=1, \cdots, p+1$ such that $\bar{f} \leq f$ and $\bar{x}_{j} \leq x_{j}$. Let $\bar{x}_{k}, k=p+2, \cdots, u$, be elements satisfying $\bar{x}_{k} \leq x_{k}$ and $\bar{x}_{k} \approx \bar{f}$. Clearly $\perp\left(x_{1}^{\prime}, \cdots, x_{p}^{\prime}, b\right)$, and so $\perp\left(x_{1}, \cdots, x_{p}, b\right)$, whence $\perp\left(\bar{x}_{1}, \cdots, \bar{x}_{p}, \bar{f}\right)$. Since $\bar{x}_{1} \cup \cdots \cup \bar{x}_{p} \cup \bar{f} \leq x_{1} \cup \cdots$ $\cup x_{p+1}$, it follows that $\perp\left(\bar{x}_{1}, \cdots, \bar{x}_{p}, \bar{f}, \bar{x}_{p+2}, \cdots, \bar{x}_{u}\right)$. Therefore we have obtained an independent system of mutually projective u elements in which $u-r+1$ elements are contained in b. Repeating this procedure we may arrive at the case that $m(b)+1$ of x_{i} are contained in b, and have a contradiction as desired.

For any element $a \in L$ we denote by a^{*} the set of all elements x with the properties that (i) $a \geq x$ and (ii) if $a \geq y \neq 0$ then $x \bigcap y \neq 0$. Thus, if $a^{*} \ni b$ for some $a \neq 0$, then $b \neq 0 . \quad a^{*} \ni b$ and $b^{*} \ni c$ imply $a^{*} \ni c$. $a^{*} \ni b$ and $a \geq c$ mean $c^{*} \ni b \bigcap c$. Hence $a^{*} \ni b \bigcap c$ if $a^{*} \ni b, c$.

An element a is called an m-element provided that (i) $a \geq b, a \bigcap c=0$ and $b \approx c$ imply $b=c=0$; (ii) there are mutually projective elements a_{1}, \cdots, a_{n} such that $a=a_{1} \dot{\cup} \cdots \dot{U} a_{n}$ and $m\left(a_{i}\right)=1, i=1, \cdots, n$. In this case it follows from Lemma 3 that $m(a)=n$.

Lemma 4. Let $0 \neq b \leq a_{1} \dot{\cup} \cdots \dot{U} a_{n}$ and let every a_{i} be an m-element. Then, $b \bigcap a_{i} \neq 0$ for some i.

Proof is easily obtained from Lemma 2 and the definition of m elements.

Lemma 5. Let a be an m-element such that $m(a)<n$. If $b=b_{1}$ $\dot{\cup} \cdots \dot{U} b_{n}$ and $b_{i} \approx b_{j}$ for every i, j, then $a \bigcap b=0$.

Proof. Let $a \bigcap b \neq 0$. By Lemma 2, $a \geq a^{\prime} \approx b^{\prime} \leq b_{j}$ for some $a^{\prime} \neq 0$, b^{\prime} and j. Denote the projective isomorphism between $L\left(0, b_{j}\right)$ and $L(0$, b_{i}) by $T_{i}, i=1, \cdots, n$. Suppose that $b^{\prime} T_{i} \geq x$ and $a \bigcap x=a \bigcap b^{\prime} T_{i} \cap x=0$.

Then $x \approx x T_{i}^{-1} \leq b^{\prime} \approx a^{\prime} \leq a$, so that $x=0$, whence $a \bigcap b^{\prime} T_{i} \in\left(b^{\prime} T_{i}\right)^{*}$ and so $\left(a \bigcap b^{\prime} T_{i}\right) T_{i}^{-1} \in b^{\prime *}$. It follows from this that $b^{\prime \prime} \equiv \bigcap_{i=1}^{n}\left(a \bigcap b^{\prime} T_{i}\right) T_{i}^{-1} \in b^{\prime *}$. Clearly $b^{\prime \prime} \neq 0$ since $b^{\prime} \neq 0$. Now $b^{\prime \prime} T_{i} \leq a \bigcap b^{\prime} T_{i} \leq a \bigcap b_{i}$ and we have $a \geq b^{\prime \prime} T_{1} \dot{\cup} b^{\prime \prime} T_{2} \dot{\cup} \cdots \dot{U} b^{\prime \prime} T_{n} \neq 0$. This implies that $m(a) \geq n$ and yields a contradiction.

Lemma 6. Let $a_{i}, i=1,2, \cdots$, be a finite or infinite sequence of m elements. If $m\left(a_{i}\right) \neq m\left(a_{j}\right)$ for every $i \neq j$, then $\left(a_{i}\right)$ is an independent system. ${ }^{6)}$

Proof. With no loss of generality we may suppose that $m\left(a_{i}\right)$ $<m\left(a_{i+1}\right)$ for $i=1,2, \cdots$. Let $\left(a_{1} \dot{\cup} \cdots \dot{U} a_{n}\right) \bigcap a_{n+1} \neq 0$. By Lemma 4, $a_{i} \cap a_{n+1} \neq 0$ for some $1 \leq i \leq n$. This contradicts Lemma 5. Therefore, $\perp\left(a_{1}, \cdots, a_{n+1}\right)$ and $\perp\left(a_{i}, i=1,2, \cdots\right)$ by induction.

Lemma 7. Assume that L satisfies the condition F. If a_{1}, \cdots, a_{n} are mutually projective and independent elements such that $m\left(a_{i}\right)=1$ for every i, then there exists an m-element b with the properties that $m(b) \geq n$ and $\left(a_{1} \cup \cdots \cup a_{n}\right) \cap b \neq 0$.

Proof. Let us suppose that Lemma is false. Now we shall construct an infinite set of elements $x_{i j}, i=n, n+1, \cdots, j=1, \cdots, i$, satisfying the conditions that (i) $x_{i j}, j=1, \cdots, i$, are mutually projective and independent, (ii) $x_{i+1, j} \leq x_{i j}$, (iii) $m\left(x_{i j}\right)=1$ for every i, j, and (iv) $x_{i i}$, $i=n, n+1, \cdots$, are independent. First we set $\alpha_{j} \equiv x_{n j}, j=1, \cdots, n$. Assume that we have constructed $x_{i j}, i=n, \cdots, n^{\prime}, j=1, \cdots, i$, with the properties above. By Lemma $3 m\left(x_{n^{\prime}} \cup \ldots \cup x_{n^{\prime} n^{\prime}}\right)=n^{\prime} \geq n$. Since $a_{j}=x_{n j}$ $\geq x_{n^{\prime} j}, j=1, \cdots, n$, we have $\left(a_{1} \cup \cdots \cup a_{n}\right) \bigcap\left(x_{n^{\prime} 1} \cup \cdots \bigcup x_{n^{\prime} n^{\prime}}\right) \geq x_{n^{\prime} 1} \cup \cdots \cup$ $x_{n^{\prime} n} \neq 0$. From these we see that $x_{n_{1}} \dot{\cup} \cdots \dot{U} x_{n^{\prime} n^{\prime}}$ is not an m-element. Hence $x_{n^{\prime} 1} \cup \cdots \cup x_{n^{\prime} n^{\prime}} \geq y,\left(x_{n^{\prime} 1} \cup \cdots \cup x_{n^{\prime} n^{\prime}}\right) \cap z=0$ and $y \approx z \neq 0$ for some y, z. By Lemma 2 and the projectivities between $x_{n^{\prime} j}$, there are mutually projective nonzero elements $x_{n^{\prime}+1, j}, j=1, \cdots, n^{\prime}+1$, such that $x_{n^{\prime}+1, j}$ $\leq x_{n^{\prime} j}, j=1, \cdots, n^{\prime}$, and $x_{n^{\prime}+1, n^{\prime}+1} \leq z$. Evidently $\left(x_{n^{\prime} 1} \cup \cdots \bigcup x_{n^{\prime} n^{\prime}}\right) \bigcap x_{n^{\prime}+1, n^{\prime}+1}=0$ and $x_{n^{\prime}+1, j}, j=1, \cdots, n^{\prime}+1$, are independent. Now put $d_{n^{\prime}+1} \equiv\left(\dot{U}_{i=n}^{n^{\prime}} x_{i i}\right) \bigcap$ $x_{n^{\prime}+1, n^{\prime}+1}$. Then each $x_{n^{\prime}+1, j}, j=1, \cdots, n^{\prime}$, contains an element d_{j} projective to $d_{n^{\prime}+1}$. Evidently, $d_{j}, j=1, \cdots, n^{\prime}+1$, are independent and $d_{j} \leq x_{n^{\prime}+1, j}$ $\leq x_{j j}, j=n, \cdots, n^{\prime}$. Hence $\dot{U}_{j=n}^{n_{j}^{\prime^{\prime}+1}} d_{j} \leq \dot{U}_{i=n}^{n^{\prime}} x_{i i}$. Since $m\left(\dot{U}_{j=n}^{n^{\prime}} x_{j j}\right) \leq \sum_{j=n}^{n^{\prime}} m\left(x_{j j}\right)$ $=n^{\prime}-n$ by Lemma 3, this implies that $d_{n^{\prime}+1}=0$, and hence $x_{i i}, i=n$, $\cdots, n^{\prime}+1$, are independent, as desired.

Now $x_{i+1, i+1} \approx x_{i+1, i} \leq x_{i i}$, i.e. $x_{i i} \succsim x_{i+1, i+1}$. By virtue of the independence of $x_{i i}, i=n, n+1, \cdots$, we have a contradiction to F, completing the proof.

Proof of Theorem. $(F \Rightarrow \Delta)$ Let $\left(a_{i}\right)$ and $\left(b_{i}\right)$ be infinite sequences such that $a_{i} \geq a_{i+1} \dot{\cup} b_{i+1}$ and $a_{i+1} \approx b_{i+1}$ for every i. Then $b_{i+1} \leq a_{i} \approx b_{i}$ and
6) An infinite set of elements of L is said to be independent in case every finite subset is independent.
$b_{i} \succsim b_{i+1}$. Since clearly $b_{i}(i>1)$ are independent, this contradicts F. (Δ and $F \Rightarrow M$) First we note that the values $m(a)$ for all m-elements a are bounded. In fact, if not we may find an infinite sequence (a_{i}) of m-elements such that $m\left(a_{i+1}\right)>m\left(a_{i}\right)$. Then $\left(a_{i}\right)$ is independent by Lemma 6. Let $a_{n}=\dot{\bigcup}_{j=1}^{m\left(a_{n}\right)} a_{n j}$ and $a_{n j} \approx a_{n j^{\prime}}$ for every j, j^{\prime}. Set b_{j} $\equiv \bigcup_{n=j}^{\infty} a_{n j}$. Clearly $b_{j} \succ b_{j+1}$ and (b_{j}) is indepedent, contradicting F. Thus, $m(a)$ for m-elements a are bounded. Denote its maximum by m. Let $L \ni \dot{U}_{i=1}^{k} a_{i}$ and assume $a_{i} \approx a_{i \prime} \neq 0$ for every i, i^{\prime}. It follows easily from Δ that α_{1} contains an element α_{1}^{\prime} such that $m\left(a_{1}^{\prime}\right)=1$. If we replace a_{1} by a_{1}^{\prime} and each of the other a_{i} by an element contained in it and projective to a_{1}^{\prime}, we may assume with loss of generality $m\left(a_{1}\right)=\cdots=m\left(a_{k}\right)=1$. From Lemma 7 there exists an m-element b such that $m(b) \geq k$. Therefore $m \geq k$ and $m(L)=m$. $(M \Rightarrow F)$ Let $\left(a_{i}\right)$ be a countable independent set such that $a_{i} \succsim a_{i+1}$ for every i. Then, for every n there are mutually projective nonzero $b_{n i}, i=1, \cdots, n$ satisfying $b_{n i} \leq a_{i}$. Since $b_{n i}$ are independent we get $m(L)=\infty$, contradicting M. $(\Delta \Rightarrow F)$ Let $\left(a_{i}\right)$ be a countable independent set such that $a_{i} \succsim a_{i+1}$ for every i. Then for every n there exist mutually projective nonzero $b_{n j}, j=1, \cdots, 2^{n}$ satisfying $b_{n j} \leq a_{2^{n}+j-1}$. Put $c_{t} \equiv \bigcup_{n=t}^{\infty} \bigcup_{k=1}^{2 n-t} b_{n k}$ and $c_{t}^{\prime} \equiv \bigcup_{n=t}^{\infty}$ $\bigcup_{k=2^{n-t}+1}^{2 n-t+1} b_{n k}$. Then $c_{t} \approx c_{t}^{\prime}$ and $c_{t-1} \geq c_{t} \cup \dot{\cup} c_{t}^{\prime}$, which contradicts Δ.
3. Let \Re be a semisimple I-ring, and L_{\Re} the lattice of all left (right) ideals of \Re. In a recent paper we have noted that $m\left(L_{\Re}\right)$ coincides with the index of $\Re .{ }^{7)}$ Therefore, as an immediate consequence of our Theorem we obtain

Corollary 2. Let \Re be a semisimple I-ring. Then the following conditions are equivalent:
(a) \mathfrak{H} is of bounded index.
(b) There is no infinite sequence of nonzero left (right) ideals \mathfrak{Y}_{i} such that $\mathfrak{l}_{i} \supseteq \mathfrak{Y}_{i+1} \oplus \mathfrak{Y}_{i+1}^{\prime}, Y_{i+1}^{\prime}$ being a left (right) ideal isomorphic to \mathfrak{l}_{i+1}.
(c) There is no infinite sequence of nonzero left (right) ideals \mathfrak{l}_{i} such that the sum $\sum \mathfrak{l}_{i}$ is direct and \mathfrak{l}_{i+1} is isomorphic to a subideal of \mathfrak{r}_{i}.

For any module \mathfrak{M} we denote by \mathfrak{M}^{*} the set of all submodules $\mathfrak{\Re}$ of \mathfrak{M} with the property that $\mathfrak{\Re} \mathfrak{\Re}^{\prime} \neq 0$ for every submodule $\Re^{\prime} \neq 0$ of \mathfrak{M}.

Lemma 8. Let \mathfrak{Q} be the minimal injective extension ${ }^{87}$ of a module \mathfrak{M}, and \mathfrak{C} the endomorphism ring of \mathfrak{D}. Then the radical of \mathfrak{C} is the set N of all endomorphisms θ of \mathfrak{Q} satisfying $\operatorname{Ker} \theta \in \mathfrak{Q}^{*}$. Moreover, \mathfrak{E} / N is isomorphic to the extended centralizer over \mathfrak{M} and hence is regular. In case \mathfrak{C} is semisimple, every submodule \mathfrak{M} of \mathfrak{M} has the
7) See [9, Lemma 4].
8) See [1, Section 4].
unique minimal injective extension $\overline{\mathfrak{N}}$ contained in $\mathfrak{\Omega} \overline{\mathfrak{M}}$ is the sum of all essential extensions of \mathfrak{N} in $\mathfrak{\Omega}$.

Proof. If Ker $\theta \in \mathfrak{Q}^{*}$ for $\theta \in \mathbb{C}$, then Ker $(1+\theta)=0$, since Ker $\theta \bigcap$ $\operatorname{Ker}(1+\theta)=0$. Hence $\operatorname{Im}(1+\theta)(\simeq \mathfrak{Q})$ is a direct summand of \mathfrak{D} and clearly contains $\operatorname{Ker} \theta\left(\epsilon \mathfrak{\Omega}^{*}\right)$; this implies $\operatorname{Im}(1+\theta)=\mathfrak{D}$ and θ is quasiregular in \mathbb{C}. It is easy to prove that N is a two-sided ideal of \mathbb{E} and that \mathbb{E} / N is isomorphic to the extended centralizer ${ }^{9)}$ over \mathfrak{M}. Since any extended centralizer is regular, \mathscr{E} / N is semisimple and N is the radical of \mathfrak{F}. Next, assume that \mathfrak{F} is semisimple, and let $\bar{\Re}$ and \mathfrak{R}^{\prime} be minimal injective extensions of \mathfrak{M} in \mathfrak{O}. By \Re^{c} we denote a maximal submodule disjoint to \Re. Since $\overline{\mathfrak{R}}$ is an essential extension of $\mathfrak{\Re , { } ^ { 1 0) }}$ we have $\bar{\Re} \cap \Re^{c}=0$. Now, there is an element $\theta \in \mathscr{E}$ such that $\overline{\mathfrak{R}}^{\theta}=\mathfrak{R}^{\prime}$ and $\left(\mathfrak{R} \oplus \mathfrak{R}^{c}\right)(1-\theta)=0$. Clearly $\mathfrak{M} \oplus \mathfrak{R}^{c} \in \mathfrak{\Omega}^{*}$, and so $1-\theta \in \mathfrak{R}$, hence $1=\theta$. Therefore $\mathfrak{R}^{\prime}=\overline{\mathfrak{R}}$.

Proof of Corollary 1. By Lemma $8, \mathfrak{M}$ is a regular ring. We denote the lattice of all principal left ideals of \Re by $\bar{L}_{\Re . ~ L e t ~}\left(\Re e_{\alpha}\right) \in \bar{L}_{\Re}$. Then the minimal injective extension left ideal of $\sum \Re e_{\alpha}$ is uniquely determined by Lemma 8, and is clearly the join $\cup \Re e_{\alpha}$ of $\left(\Re e_{\alpha}\right)$. Hence \bar{L}_{\Re} is complete. To see the upper continuity of $\bar{L}_{\mathfrak{H}}$ we assume that ($\Re e_{\alpha}$) is simply ordered. Since $\bigcup \Re e_{\alpha}$ is an essential extension of $\sum \Re e_{\alpha}$, that is, $\left(\cup \Re e_{\alpha}\right)^{*} \ni \sum \Re e_{\alpha}$, we have $\left(\left(\cup \Re e_{\alpha}\right) \cap \Re f\right)^{*} \ni\left(\sum \Re e_{\alpha}\right) \cap \Re f=\sum\left(\Re e_{\alpha}\right.$ $\cap \Re f)$ for any $\Re f \in \bar{L}_{\Re i}$. Hence ($\left.\cup \Re e_{\alpha}\right) \cap \Re f \subseteq U\left(\Re e_{\alpha} \cap \Re f\right)$, which shows the upper continuity of \bar{L}_{\Re}. Thus, it follows from Theorem that for \bar{L}_{\Re} Conditions Δ and M are equivalent. Now, (i) \Rightarrow (ii) \Rightarrow (iii) are known. ${ }^{11)}$ Levitzki proved that an $F I$-ring is P-soluble if and only if it satisfies the D-condition. ${ }^{12)}$ It is not too hard to see that the D-condition for a regular ring $\mathfrak{\Re}$ is equivalent to Condition Δ for $\bar{L}_{\mathfrak{\Re}}$. On the other hand, the boundedness of indeces in \Re is equivalent to Condition M for $L_{\mathfrak{\Re}}$, and hence also to Condition M for $\bar{L}_{\mathfrak{\Re}}$. Therefore we have (iii) \Leftrightarrow (i). The last statement of Corollary 1 follows from [8, Theorem 5], completing the proof.

References

[1] B. Eckmann und A. Schopf: Ueber injective Moduln, Archiv der Mathematik, 4 (1956).
[2] N. Jacobson: Structure of rings, Amer. Math. Soc. Colloq. Publ., 37 (1956).
[3] R. E. Johnson: The extended centralizer of a ring over a module, Proc. Amer. Math. Soc., 2 (1951).
9) See [3].
10) See $[1,(4.1)]$.
11) See [4, Theorems 5.6 and 5.7].
12) See [5] and [6, Corollary 1 of Theorem 5.3].
[4] J. Levitzki: On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc., 74 (1953).
[5] -: On P-soluble rings, Trans. Amer. Math. Soc., 77 (1954).
[6] -: The matricial rank and its application in the theory of I-rings, Revista da Faculdade de Ciências de Lisboa, 3 (1955).
[7] J. von Neumann: Lectures on Continuous Geometry I, Princeton (1936-1937).
[8] Y. Utumi: On quotient rings, Osaka Math. J., 8 (1956).
[9] -: A note on an inequality of Levitzki, Proc. Japan Acad., 33 (1957).

