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1. Introduction. In earlier paper [2], we have proved Theorem 1
[2] which is concerned with the semi-continuity of additive functionals
on semi-ordered linear spaces. By the same notion, we shall obtain
some results concerning additive functionals on Boolean algebras.”
Let B be a o-complete® Boolean algebra. A positive functional m on
B is called a finitely additive measure if the following condition is
satisfied.
(1.1) m(x+y)=m(x)+m(y)

for x,ye B  with x~y=0.

Furthermore if the functional m satisfies the following condition
(1.2), m is called a totally additive measure.
(1.2) For a system of mutually orthogonal elements x; (i=1,2,--+)
we have

m( lei) = ;1 m(x,)
(1.2) implies (1.1), but the converse does not follow. However, some-
times a finitely additive measure is totally additive on some ideal®
of B.

If B is a Boolean algebra, then we can consider the representation
space. (This space consists of all dual maximal ideals p of B.) We
denote this space by €. € constitutes a compact Hausdorff space with
open basis: U,={p:p>s2x}, xeB.

If B is o-complete, then the closure of a ¢-open set (countable
union of closed sets) of € is open in €. An ideal I of B is said to
be dense in B if for any %(3=0)e B there exists an element yel with
0fy=w.

We shall consider the following property of o-complete Boolean
algebra.

(A) Let A, (n=1,2,---)CE€ be g-open and dense. Then we can

find an open demse set UCE with UC ﬁ A,.

n=1

We have also the following property equivalent to (A).

(A") Let B, (n=1,2,-..)CE be i-closed® and no-where dense
1) For the definition of Boolean algebra, see [1, Chapter 10].
2) B is s-complete if for #; (¢=1,2,---), there exists xzi\lei.

3) M B is an ideal (in Birkhoff’s terminology [1]) if a€ M, b=a implies be M.
4) Complement of s-open set.
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sets in €. Then | B, is no-where dense.

n=1
2. Theorem 1. Let B be a g-complete Boolean algebra with the
property (A) and let m be o finitely additive measure on B. Then
m is totally additive on some dense ideal of B.
Proof. By the same method applied to the proof of Theorem 1
[2], we can find a s-open and dense set 4,C€ (k=1,2,-..) such that
A,DOU,, (i1=1,2,---) and 2,{ 2,0 implies

inf m(z,) <-L.
[ k

By the property (A), we find an open dense set UCE with
U CkﬂlAk.

If UDU,, (#=1,2), and @,}2,0, we see that inf m(xi)g.;;

(k=1,2,-..), ie. ir:f m(x;)=0.

Since U is open and dense in G, the set I={x:2¢B and U,C U}
is a dense ideal of B. For mutually orthogonal elements x,¢ U with

G v,=xeU and y,= G x, (¢=1,2,--+), we have ﬁ Y;= ﬁ ( Loj x,)=0
fm=] i=j J=1 j=1 =3

and y,=>y,=>---, hence igf m(y,;)=0, ie. m(lj xi)=§m(xi). This
i=1 Gl
proves the theorem.
We shall consider another property of a o¢-complete Boolean
algebra B.
(B) Let A, (n=1,2,.-.) be g-open and dense sets in €. Then
N A, contains a g-open dense set.

n=1
H. Nakano has proved that (B) is equivalent to the following.”

(B) For double system w,; with x,;1 ;x; there exist x, (k=1,
2,--+) and number n(i, k), 1, k=1,2,--- with x4 ;@ and €=, . -

(B) implies (A), but (A) does not follow (B).

(C) 1st category set in € is always mo-where dense.

It is easy to see that (C) implies (A).

Remark 1. If B is complete,” under the hypothesis of continuum,
(B) implies (C).”

Corollary 1. Let B have the property (B) or (C) and m, (n=1,
2,-++) be finitely additive measures. Then there exists a dense ideal
wn which m, are totally additive at the same time.

Proof. We shall prove only the case that B has the property (B).
By Theorem 1 and the property (B), there exist s-open and dense sets
U,C€ (rn=1,2,-..) such that

5) See [3, p. 45].

6) B is complete if for .1 (1€ A)e B, there exists w=lUAxx.
€

7) This fact is due to Prof. I. Amemiya.
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U,DU,, (&=0, 8,>8,>-- imply inf m,(x)=0.
i=1 %

By the property (B), we find a o¢-open and dense set U with
vc ﬁUn. Putting I={x:U,CU}, I is a dense ideal of B in which
n=1

m, (n=1,2,.--) are totally additive at the same time.

Corollary 2. If B is a complete Boolean algebra with the prop-
erty (C), then, for a finitely additive measure m, there exist a
normal measure® m' and dense ideal I of B such that

m(x)=m'(x) for xeB and m(x)=m'(x) for xel.

Proof. By the method applied to Theorem 1 [2], we can find a
dense ideal IC B such that for any system «;, (Ae¢4)el with x,{ ,0
we have 11615 m(x,)=0.

Since I is a dense ideal of B, for any x¢ B, there exists a system

x, el with x; 4 ,c,2. If there exist y,(rel’)el and wx,(1c4)el with
Y: P rer®, @, 1 2e4%, then

sup m(x,) = sup m(y,).”

€4 rer
Hence, if we put

m'(x)=sup m(x,) for x= U x,(x;¢1),
€4 €4

then m’ satisfies the conditions of Corollary 2.

Remark 2. Theorem 1 is not true in the case that B has not
the property (A). For example, let (0,1) be an open interval of real
numbers with terminals 0, 1. The complete Boolean algebra C con-
sisting of regularly open sets!” in (0, 1) has not the property (A). For,
€ (the representation space of C) has a dense and countable set {p;}
(¢=1,2,--.) and any element of € is not isolated; therefore €—p,=A4,

is dense in €, and (] 4, does not contain any open and dense set.
i=1

Furthermore A, is s-open set, i.e. C has not the property (A). Let m
be totally additive measure on B. Then m is always 0, ie. m(x)=0
for every weC. For any p, (¢=1,2,- ), we can find a sequence «;;  ;
(§=1,2,--+) such that

COU.

oo
LR and [],,=0.
J=1

If m is totally additive, then we can find j, with m(a:,.,ji)ge-zltT
(t=1,2,--.) where ¢ is an arbitrary given positive number. Because
{p} (¢=1,2,-..) is dense in €, we see that

1= G %;,, (1 is maximal element of C)
$=1

8) m is called a normal measure if 217 1e42 implies m(x):full)l m(x2).
€

9) This fact is independent from the cardinal number of A or I'.
10) E is called a regularly open set if interior of E is E.
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and
2 1,1
< X < i il cee |—=
m(1)~i§=1} m(wmi _e( 9 + 22—}— > e.

Since we can choose ¢ arbitrary, we have m(1)=0. Hence m(x)=0
for xeC. Furthermore there exists a finitely additive measure m on

B such that m(z)>0 for x(3=0)¢B. For instance, putting fx(pi)=%
if zep, and f,(p,)=0 if xep, we see that m(x):ifx(pi), xeC is
2=1

finitely additive measure on C. Thus C is an example which does
not follow Theorem 1.

3. Applications. Let R be a totally continuous and super-uni-
versally continuous semi-ordered linear space. H. Nakano studied
modulared linear spaces. We shall apply Theorem 1 [2] to finite
modulars without proof.

Theorem 2. Let m be a functional on R which satisfies modular'®
conditions except semi-continuity axiom, but is coefficient-continuous.'®
Then there exists a complete semi-normal manifold of R in which m
satisfies modular conditions.

R is called semi-regular if @(a)=0 (for all aeR)!® imply a=0.
In the case that R is semi-regular, we can define m such that

w(a) = Sup {a(a)—m(a)}

where R™'® is the modular conjugate space of R and m(d)zsug {a(a)
ae

—m(a)} for e R™. Furthermore, if m is a modular, then mi(a)=m(a)
for all acR.

Theorem 3. Let m be a functional on semi-regular space R
which satisfies the conditions of Theorem 2. Then m=m on some
complete semi-normal manifold.

A norm ||af|, acR is said to be L-type norm if a=>0, b=0 imply
la+bll=|la||+]|b]]. A norm ||a]|| is said to be continuous if a@; | ic 0
implies 125 [la;]|=0. It is well known that if || || is complete, then

I| ]I is continuous.

Theorem 4. If there exists an L-type norm on R, then this norm
coincides with some continuous norm on some complete semi-normal
manifold.

Remark 3. Theorems 2, 3, 4 do not remain true if R is not totally
continuous. For instance the totality of continuous functions defined

11) For the definition of modulars, see [3].
12) See [2].

13) R is the totality of universally continuous linear functionals on R (see [3]).
14) See [3].
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on € in the former remark is not totally continuous and an example
which does not follow Theorems 2, 8, 4.

References

[1] G. Birkhoff: Lattice Theory, Amer. Math. Col. (1948).

[2] S. Koshi: On semi-continuity of functionals. I, Proc. Japan Acad., 34, 513
(1958).

[8] H. Nakano: Modulared Semi-ordered Linear Space, Tokyo Math., Book series
(1950).



