98. On Locally Q-complete Spaces. III

By Takesi ISIWATA

Tokyo Gakugei University, Tokyo (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1959)

We assume always that X^{*} is locally Q-complete but not a Q-space. Then there are one-point Q-completions of X [2]. In this paper, we shall investigate some properties of one-point Q-completions of X. We noticed, in [2], that X is open in νX and $X^{\frown}(\nu X-X)^{\beta}$ is a Q-space. We have similarly that if B is any compact subset in $\beta X-X$ which contains $\nu X-X$ then the space $X^{\frown}B$ is also a Q-space, and moreover the space Z obtained from $X^{\frown}B$ by contracting B to a point in B is a one-point Q-completion (Theorem 1 in [2]). In the following, we shall prove that any one-point Q-completion of X is given as an image of a space $X^{\frown}B$ under a continuous mapping φ such that $\varphi \mid X$ is a homeomorphism which leaves every point of X invariant where B is some compact subset in $\beta X-X$ which contains $\nu X-X$.

Lemma 1. Suppose that $Z=X \subseteq \{p\}$ is a one-point Q-completion of X. Then there is a continuous mapping ψ of νX onto Z such that $\psi(\nu X-X)=\{p\}, \ \psi(x)=x$ for every $x \in X$ and $\psi \mid X$ is a homeomorphism.

Proof. X is considered as a uniform space X_1 with the structure generated by $C = \{f \mid X; f \in C(Z)\}$ and Z becomes a completion of X_1 . On the other hand, X may be considered as a uniform space X_2 with the structure generated by C(X). Since $C(X) \supset C$ and the identical mapping *i* is uniformly continuous, *i* has a continuous extension ψ of νX to Z. Hence, to prove Lemma, it is sufficient to show that $\psi(\nu X - X)$ = p. Suppose that $\{a_{\alpha}; a_{\alpha} \in X\} \rightarrow a \in \nu X - X$ and $\psi(a) = b \in X \subset Z$. We take an open neighborhood V(in Z) of *b* which does not contain *p*. $i^{-1}(V)$ is open in νX because X is open in νX . By the assumption, for some index $\alpha_0, \alpha > \alpha_0$ implies $\psi(a_{\alpha}) = i(a_{\alpha}) \in V$, and hence $i^{-1}(V) \ni a_{\alpha}$ for $\alpha > \alpha_0$. This is a contradiction. We have therefore that $\psi(\nu X - X) = p$.

For any point $x \in Z$, let us put $B(x) = \overline{\psi^{-1}(V)}$ (in βX) where V runs over all neighborhoods (in Z) of x. Since $\psi(\nu X - X) = p$. B(p) is a compact subset containing $\nu X - X$.

Lemma 2. $B(x) = \{x\}$ for any $x \in X \subset Z$ and $B(p) \subset \beta X - X$.

Proof. For any point $y \in X \subset Z$, there is an open neighborhood U (in Z) of $y \in X \subset Z$ which is disjoint from some neighborhood (in Z) of p. We have therefore $B(p) \Rightarrow y$, which implies that $B(p) \subset \beta X - X$. Simi-

^{*)}A space X considered here is always a completely regular T_1 -space, and other terminologies used here, for instance "Q-completion," are the same as in [2,3].

T. ISIWATA

larly we have $B(x) = \{x\}$ for any point $x \in X \subset Z$.

We define a mapping φ of $X \subseteq B(p)$ onto Z by

 $\varphi(x) = \int \Psi(x) \text{ for } x \in \mathcal{V}X,$

$$p \text{ for } x \in B(p)$$

Then φ is a continuous mapping and $X \subseteq B(p)$ is the largest subspace of βX on which ψ has a continuous extension (Theorem 2.1 in [1]).

Now suppose that Z is a one-point Q-completion of X which is obtained form $X \subseteq B$ by contracting B to a one point p where B is a compact subset, containing $\nu X - X$, contained in $\beta X - X$. Then we have Lemma 3. B(p) = B.

Lemma 3. B(p)=B. *Proof.* Let ψ be a mapping from $X \subseteq B$ onto Z and φ a mapping

mentioned above. $\psi | \nu X$ is a continuous mapping from νX on Z, and $X \supset B(p)$ is the largest subspace of $\beta(X)$ on which $\psi | \nu X$ has a continuous extension. Therefore we have $B(p) \supset B$. If there is a point $b \in B(p) - B$, then there is a directed set $\{a_{\alpha}; \alpha \in P\}$ in X which converges to b in $X \supset B(p)$, but does not converge in $X \supset B$. In $X \supset B(p)$, there are disjoint open subsets U and V such that $U \supset B$, $V \ni p$ and $\overline{U} \supset \overline{V} = \theta$. Then $(X \supset B) \supset \overline{U}$ is disjoint from $(X \supset B) \supset \overline{V}$ and their images under ψ are disjoint from each other. This shows that $\psi(a)_{\alpha}$ deos not converge to p. On the other hand $\psi(a_{\alpha}) = \varphi(a_{\alpha}) \rightarrow b$. This is a contradiction, and hence B = B(p).

Suppose that B_1 and B_2 are compact subsets contained in $\beta X - X$ and Z_i is a one-point Q-completion of X obtained from $X \subseteq B_i$ contracting B_i to a point p_i (i=1,2). As is easily seen from the proof of Lemma 3, under a mapping φ which maps X homeomorphically onto X and which keeps X pointwisely fixed, Z_1 is homeomorphic with Z_2 if and only if $B_1 = B_2$.

Let Q(X) be a family of all one-point Q-completions of X. We shall define that for any $Z_1, Z_2 \in Q(X), Z_1$ is equal to Z_2 if and only if there is a homeomorphism from Z_1 on Z_2 which maps X onto X pointwisely fixed.

Theorem 1. Let X be locally Q-complete but not a Q-space. Then there is a one-to-one correspondence between Q(X) and a set of all compact subsets contained in $\beta X - X$ which contain $\nu X - X$.

If $Z_{\alpha} \in Q(X)$ is a continuous image of $X \subseteq B$ where B is a compact subset contained in $\beta X - X$ containing $\nu X - X$, then we set $B = B_{\alpha}$. We shall define $Z_{\alpha} > Z_{\beta}$ for any $Z_{\alpha}, Z_{\beta} \in Q(X)$ if and only if there is a continuous mapping $f_{\alpha\beta}$ from Z_{α} onto Z_{β} such that $f_{\alpha\beta} | X$ is the identical homeomorphism and $f_{\alpha\beta} (Z_{\alpha} - X) = Z_{\beta} - X$.

Suppose that $B_{\alpha} \subset B_{\beta} \subset \beta X - X$ and j is an injection from B_{α} into B_{β} and $\varphi_{\alpha}(\text{or } \varphi_{\beta})$ is a continuous mapping from $X \subset B_{\alpha}(\text{or } X \subset B_{\beta})$ onto Z_{α} (or Z_{β}) respectively such that $\varphi_{\alpha}(B_{\alpha})$ (or $\varphi_{\beta}(B_{\beta})) = Z_{\alpha} - X(\text{or } Z_{\beta} - X)$, and $\varphi_{\alpha} \mid X$ is a homeomorphism which keeps X pointwisely fixed. It is

432

easily verified that $\varphi_{\beta}j\varphi_{\alpha}^{-1}=f_{\alpha\beta}$ is a continuous mapping from Z_{α} onto Z_{β} such that $f_{\alpha\beta}|X$ is the identical homeomorphism. Conversely suppose that $Z_{\alpha}>Z_{\beta}$, then by the definition of B_{α}, B_{β} , and the fact that any open set in Z_{β} is also open in Z_{α} , we have $B_{\alpha} \subset B_{\beta}$. Therefore the relation "<" in Q(X) is transformed into the inclusion relation among the family of compact subsets contained in $\beta X - X$ containing $\nu X - X$. Therefore Q(X) becomes a lattice. Let Z_{α_1} be a one-point Q-completion of X where $B_{\alpha_1} = (\nu X - X)^{\beta}$. It is easy to see that $Z_{\alpha_1} > Z_{\alpha}$ for any $Z_{\alpha} \in Q(X)$, that is, Z_{α_1} is the largest element 1 in the lattice Q(X) (Z_{α_1} is called a natural one-point Q-completion of X (see [2])).

Theorem 2. If X is locally Q-complete but not a Q-space, then Q(X) is a lattice having the largest element 1, in other words, the natural one-point Q-completion is the largest element in Q(X).

Suppose that X is not locally compact, then there is not an element Z_{α_0} in Q(x) such that $Z_{\alpha} > Z_{\alpha_0}$ for any $Z_{\alpha} \in Q(X)$. For, since $\beta X - X$ is not compact, for any $Z_{\alpha} \in Q(X)$, we have $B_{\alpha} \neq \beta X - X$, and hence there is a point b in $\beta(X-X)-B_{\alpha}$. This shows that $Z_{\alpha} > Z_{\beta}$ where $B_{\beta} = B_{\alpha} \smile \{b\}$. If X is locally compact, it is easy to see that $Z_{\alpha} > Z_{\alpha_0}$ for any $Z_{\alpha} \in Q(X)$ where $B_{\alpha_0} = \beta X - X$. Thus Z_{α_0} is the smallest element 0 in the lattice Q(X). Thus we have

Theorem 3. Let X be locally Q-complete but not a Q-space; then X is locally compact if and only if Q(X) is a lattice having the smallest element 0.

As an immediate consequence of Theorem 2, if Q(X) is a finite lattice, X must be locally compact. Moreover we can prove, in this case, that $(\nu X - X)^{\beta} = \beta X - X$. For, suppose the contrary. Since $Y = X^{\smile}$ $(\nu X - X)^{\beta}$ has the property such that $\beta Y = \beta X = Y^{\smile} D$ where D is a finite set, Y must be pseudo-compact. On the other hand, Y is a Qspace, and hence Y must be compact. This implies that $\beta X = Y$.

Conversely, if X is locally compact and $(\nu X - X)^{\beta} = \beta X - X$, it is obvious that Q(X) consists of only one element. Thus we see that Q(X) is a finite lattice if and only if X is locally compact and $\nu X - X$ is dense in $\beta X - X$.

Finally, we shall consider some subring of C(X) where Z_{α} is any one-point Q-completion of X. Let $Z_{\alpha} = X \smile \{p\}$ and $Y = X \smile B$ where $B = B_{\alpha}$. Now we denote by C(Z, p) the ring consisting of all continuous functions defined on Z which vanish on some neighborhood of p. Any element in $C_B(X)$ is considered as a function in C(Z, p). Conversely it is easy to see that any function in C(Z, p) can be regarded as a function in $C_B(X)$. In [3], we proved that any non-trivial ring homomorphism on $C_B(X)$ is a point ring homomorphism. From these facts, we have that any ring homomorphism φ on C(Z, p) is a point ring homomorphism, that is, i) if φ is not trivial, $\varphi = \varphi_x$, $x \neq p$, ii) if φ is trivial, $\varphi = \varphi_p$ (we notice that C(Z, p) is a linear subring of C(Z)). Thus we have

Theorem 4. Let X be locally Q-complete but not a Q-space. If Z is any one-point Q-completion of X, then any ring homomorphism on C(Z, p) is a point ring homomorphism φ_x where $Z = X \subseteq \{p\}, x \in X$.

References

- R. H. McDowell: Extension of functions from dense subspaces, Duke Math. Jour., 25, 297-304 (1958).
- [2] T. Isiwata: On locally Q-complete spaces. I, Proc. Japan Acad., 35, 232-236 (1959).
- [3] T. Isiwata: On locally Q-complete spaces. II, Proc. Japan Acad., 35, 263-267 (1959).