32. Correspondence of Sets on the Boundaries of Riemann Surfaces

By Zenjiro KURAMOCHI

Mathematical Institute, Hokkaido University (Comm. by K. KUNUGI, M.J.A., March 12, 1960)

Let D_z be a domain in the z-plane. Let f(z) = u(z) + iv(z) : w = u + ivbe a topological mapping of D_z into D_w in the w-plane. If $\lim_{|dx| \to 0} \frac{|dw|}{|dz|} < M$ in D_z and f(z) is a quasi-conformal mapping almost everywhere in D_z whose dilatation quotient < K in D_z , we say that f(z) is an almost quasi-conformal mapping and abbreviate it to A.Q.C. Let U(z) be a harmonic function in D_z such that the Dirichlet integral D(U(z)) is finite and let f(z) = w be an A.Q.C. with dilatation quotient < K. Then

$$\frac{1}{K}D(U(z)) \leq D(U(f(w))) \leq K D(U(z)).$$
(1)

Example. Let D and D' be simply connected domains whose boundary consists of segments \overline{AB} , \overline{BD} , \overline{DE} , \overline{EF} , \overline{FA} and $\overline{AB'}$, $\overline{B'C'}$, $\overline{C'D'}$, $\overline{D'E}$, \overline{EF} , \overline{FA} , where $A = \alpha e^{i\left(\theta_2 + \frac{\pi}{2}\right)} + \beta e^{i\theta_1}$, $B = -r + i\alpha \sin \theta_2$ $+i\beta \sin \theta_1$, $C = -r + i\beta \sin \theta_2$, D = -r, E = 0, $F = \alpha e^{i(\pi - \theta_2)}$, D' = r, C + C'= 2F, B + B' = 2A.

Put v(z)=y, $\frac{u(z)+x}{2}=y \cot \theta_2$ in *CDEF* and v(z)=y, $\frac{u(z)+x}{2}=(y-h) \cot \theta_1$, $h=\alpha \sin \theta_2$, in *CFAB*. Then $|dw|=(1+2 \cot^2 \theta_i (\sin (\psi+2\varphi)))^{\frac{1}{2}}|dz|$, where $dx=dz \cos \varphi$, $dy=dz \sin \varphi$ and $\psi=\frac{\pi}{2}-\theta_i$.

Then we see that the above mapping is quasi-conformal in the interior of CDEF and in the interior of CFAB and is an A.Q.C. in the closure of ABDEF.

Let R be a Riemann surface with positive boundary and $\{R_n\}$ be its exhaustion with compact relative boundaries $\{\partial R_n\}$ $(n=0, 1, 2, \cdots)$. Let B be the ideal boundary of R. Assume that a metric δ is given on R+B, for instance, Martin's metric. Let F be a closed set in B. Put $F_m = E\left[z \in R+B : \delta(z,F) \leq \frac{1}{m}\right]$. Then $F = \bigcap_m F_m$. Let $U_{m,n,n+i}(z)$ be a harmonic function in $R - ((R_{n+i} - R_n) \cap F_m) - R_0$ such that $U_{m,n,n+i}(z) = 0$ on ∂R_0 , $U_{m,n,n+i}(z) = 1$ on $\partial ((R_{n+i} - R_n) \cap F_m)$ and $\frac{\partial U_{m,n,n+i}(z)}{\partial n} = 0$ on $\partial R_{n+i} - F_m$. Then $U_{m,n,n+i}(z) \to U_{m,n}(z)$ in mean as $i \to \infty$, $U_{m,n}(z) \to U_m(z)$ in mean as $n \to \infty$ and $U_m(z) \to U(z)$ in mean as $m \to \infty$. We call D(U(z)) $= \int_{\partial R_0} \frac{\partial U(z)}{\partial n} ds$ the capacity¹⁰ of F relative $R - R_0$. Then we see Cap $(\sum F_i) \leq \sum \operatorname{Cap}(F_i)$ (2)

for closed sets F_i and that $\operatorname{Cap}(F) > 0$ or = 0 does not depend on R_0 so long as R_0 is compact.

Theorem 1. Let D be a domain in the z-plane. Let F_z be a closed set of positive logarithmic capacity on ∂D . Assume that at every point $z \in F_z$, there exists a sector S(z) with its vertex at z, with a positive radius and a positive aperture such that $\operatorname{int} S(z) \subset D$. Then F_z is a set of positive capacity relative $D-D_0$, where D_0 is a compact disc in D.

Proof. Let $E_{n,i}$ be the set of points z such that a sector S(z) with its vertex at z and S(z) satisfies the following conditions:

- 1) int $S(z) \subset D$.
- 2) radius of $S(z) \ge \frac{1}{n}$.
- 3) $\frac{1}{n} \leq \text{aperture of } S(z) < \pi \frac{1}{n}$.
- 4) $\frac{2\pi}{32n}i \leq \text{argument of the half line of } S(z) < \frac{2\pi}{32n}(i+1).$

Then $F_z = \sum_{n=1}^{\infty} \sum_{i}^{n} E_{n,i}$. Then there exist numbers n_0 and i_0 such that E_{n_0,i_0} is of positive logarithmic capacity. And there exists a closed subset $F'(\Box E_{n_0,i_0})$ of positive logarithmic capacity. Let F'' be the set of points z such that the argument of the half line of $S(z) = \frac{2\pi i_0}{32n_0}$, radius of $S(z) \ge \frac{1}{n_0}$ and its aperture $\ge \frac{\pi}{32n}$. Then by 4) $F'' \supseteq E_{n_0,i_0}$. Therefore we can suppose that at every point z of F', there exists a sector S(z) with aperture $2\theta(\frac{\pi}{2} > 2\theta > 0)$, radius =r its vertex at z and the argument of the half line is $\frac{\pi}{2}$. We divide the z-plane into an enumerably infinite number of rectangles such that

¹⁾ Z. Kuramochi: Mass distributions on the ideal boundary of Riemann surfaces, II, Osaka Math. Jour., 8 (1956).

Z. KURAMOCHI

[Vol. 36,

$$\frac{r}{16}i\cot\theta \leq x \leq \frac{r}{16}(i+1)\cot\theta, \quad \frac{r}{16}j \leq y \leq \frac{r}{16}(j+1)$$
$$i, j=0, \ \pm 1, \pm 2, \cdots$$

Then there exists at least a rectangle such that the subset F of F' contained in the rectangle is of positive logarithmic capacity. Without loss of generality, we can suppose that the rectangle R is $E[z:0 \le x \le \frac{r}{16}, 0 \le y \le \frac{r}{16} \cot \theta]$. Let R be a rectangle $E[z:-\frac{r}{16} \le x \le \frac{2r}{16}, -\frac{r}{2} \cot \theta \le y \le \frac{r}{2} \cot \theta]$. Let p be a point of F. Then int $S(p) \subset D$, whence there exists no point of F in R' which has the same projection as that of p. Hence y-coordinate y of p can be considered as a one-valued function y=f(x) of the projection x of p. It is clear

$$\left|rac{y_1\!-\!y_2}{x_1\!-\!x_2}
ight|\!\leq\!\cot heta$$
 for $p(z_1)$ and $p(z_2)\!\in\!F$

and $S(p): p \in F$ contains the rectangle $E\left[z: -\frac{r}{16} \leq x \leq \frac{2r}{16}, \frac{r}{2} \cot \theta > y\right] > \frac{r}{8} \cot \theta$. (3)

Let Ω be the domain containing every $S(z): z \in F$ and contained in R'. Then Ω is bounded by segments which are boundaries of $S(z): z \in F$ and the boundary of R' and F. By (3) Ω is simply connected $\subset D$ and its boundary is rectifiable. We show that F is of positive capacity relative Ω which implies that $F_z(\supset F)$ is of positive capacity relative D.

Case 1. F is of positive linear measure. In this case map Ω conformally into $|\xi| < 1$. Then F is mapped onto a set of positive linear measure. Hence $\lim_{m} \omega_m(z) > 0$, where Ω_0 is a compact set in Ω and $\omega_m(z)$ is a harmonic function in $\Omega - \Omega_0 - F_m$ such that $\omega_m(z) = 0$ on $\partial \Omega_0 + \partial \Omega - F_m$ and $\omega_m(z) = 1$ on ∂F_m and $F_m = E\left[z: \operatorname{dist}(z, F) \leq \frac{1}{m}\right]$, whence $U(z) = \lim_{m} U_m(z) \geq \lim_{m} \omega_m(z) > 0$, where $U_m(z)$ is a harmonic function in $\Omega - \Omega_0 - F_m$ such that $U_n(z) = 0$ on $\partial \Omega_0$, $\frac{\partial U_m(z)}{\partial n} = 0$ on $\partial \Omega - F_m$ and $U_m(z) = 1$ on ∂F_m . Thus F is of positive capacity.

Case 2. F is of linear measure zero. Let F_x be the projection of F. Then the function y(x) $(x \in F_x)$ satisfies the Lipsitz's condition, whence F_x is also closed. Now the complementary set of F with respect to y=0, $0 \le x \le \frac{r}{16}$ is composed of an enumerably infinite number of open intervals I_i $(a_i < x < b_i)$. Let Ω_i be the subdomain of Ω lying between $x=a_i$ and $x=b_i$. Let Γ be the boundary of $\partial \Omega$ consisting of F and segments which are boundaries of $S(z): z \in F$. Then Γ can be

considered as a graph of $y=g(x):-\frac{r}{16}< x<\frac{2r}{16}$ and it is clear that g(x) also satisfies the Lipsitz's condition

$$\left| - \frac{g(x_1) - g(x_2)}{x_1 - x_2} \right| < \cot \theta.$$

Let Γ_1 , Γ_2 and Γ_3 be boundaries of Ω lying on $y = \frac{r}{2} \cot \theta$, $x = -\frac{r}{16}$ and $x = \frac{2r}{26}$ respectively. Let w = f(z) = u(z) + iv(z) : u(z) = x, v(z) = 2g(x)-y be the mapping. Then f(z) is continuous and univalent and $\sup_{|dx| \to 0} \left| \frac{dw}{dz} \right| < M_1(\theta) = (1 + 2 \cdots \cot \theta / 1 + \cot^2 \theta)^{\frac{1}{2}}$ and A.Q.C with dilatation quotient $\leq M_2(\theta) = ((1 + 2 \cot \theta / \csc^2 \theta) / (1 - 2 \cot \theta / \csc^2 \theta))^{\frac{1}{2}}$ in $\sum_i \text{ int } \Omega_i$. On the other hand, $\overline{\sum \partial \Omega_i}$ is a set of areal measure zero. Thus f(z)is an A.Q.C. $f(\Omega)$ contains a rectangle $: -\frac{r}{16} \leq x \leq \frac{2r}{16}, \frac{-r \cot 4}{4} \leq y < 0$ by $r \cot \theta \left(1 - 2\left(\frac{1}{2} - \frac{1}{8}\right)\right) = -\frac{r}{4} \cot x$

Assume that F is of capacity zero relative Ω . Then $D(U_n(z)) \to 0$, where $U_n(z)$ is a harmonic function in $\Omega - F_n : F = E \begin{bmatrix} z : \operatorname{dist}(z, F) \leq \frac{1}{n} \end{bmatrix}$ such that $U_n(z) = 0$ on $\Gamma_1 + \Gamma_2 + \Gamma_3$, $U_n(z) = 1$ on ∂F_n and $\frac{\partial U_n(z)}{\partial n} = 0$ on $\Gamma - F_n$. Now $\partial F_n + f(\partial F_n)$ encloses F. Put $\widetilde{U}_n(z) = U_n(z)$ in $\Omega - F_n$, $\widetilde{U}_n(z) = U_n(f^{-1}(z))$ in $f(\Omega - F_n)$. Then $\widetilde{U}_n(z)$ is continuous in $(\Omega - F_n + f(\Omega - F_n))$, $\widetilde{U}_n(z) = 0$ on $\Gamma_1 + \Gamma_2 + \Gamma_3 + f(\Gamma_1 + \Gamma_2 + \Gamma_3)$ and $\widetilde{U}_n(z) = 1$ on $\partial F_n + f(\partial F_n)$. Then by (1) $D(\widetilde{U}_n(z)) \leq D(U_n(z))(1 + M_2(\theta))$. Let $U_n^*(z)$ be a harmonic function in $(\Omega - F_n) + f(\Omega - F_n)$ such that $U_n^*(z) = 0$ on $\Gamma_1 + \Gamma_2 + \Gamma_3 + f(\Gamma_1 + \Gamma_2 + \Gamma_3)$ and $U_n^*(z) = 1$ on $\partial F_n + f(\partial F_n)$. Then by the Dirichlet principle

$$D(U_n^*(z)) \leq D(U_n(z)) \to 0 \quad \text{as } n \to \infty.$$

On the other hand, $\partial F_n + f(\partial F_n)$ encloses F in a domain $\Omega + f(\Omega)$ and the distance between $(\Gamma_1 + \Gamma_2 + \Gamma_3 + f(\Gamma_1 + \Gamma_2 + \Gamma_3))$ and F is positive. This contradicts that F is of positive logarithmic capacity. Hence F is of positive capacity relative Ω . This implies that $F_z(\supset F)$ is of positive capacity relative D.

Let G be a non-compact domain in a Riemann surface R whose relative boundary G consists of at most an enumerably infinite number of compact or non-compact analytic curves clustering nowhere in R. We can construct another Riemann surface \hat{G} by the process of symmetrization. We proved the following

Theorem.²⁾ Let R be a Riemann surface with null-boundary.

115

²⁾ Z. Kuramochi: On covering surfaces, Osaka Math. Jour., 6 (1954).

Let G be a non-compact domain. Then $G + \hat{G}$ is a Riemann surface with null-boundary.

As an inverse of the above theorem we have by Theorem 1 the following

Theorem 2. Let R be a Riemann surface of finite genus with positive boundary. Let B' be a closed subset of B such that B' is of positive capacity relative R. If there exists a sector $S(z) \subset G$ with its vertex at $z \in B'$ at every point of B', then $G + \hat{G}$ is a Riemann surface with positive boundary.

Let $w=f(z): z \in R$ be an analytic function in a Riemann surface Rand suppose that the covering surface of f(z) is spread over the wsphere K. Let a be a point of K and K_{ρ} be a spherical disc of radius ρ with a as its centre. Let n(a) be the number of zero of f(z)-ain R.

If
$$\lim_{\substack{e \to 0}} \sup_{w \in K_e} n(w) < \infty$$
,

then a is called a boundedly covered point.

Let F be a closed set on the ideal boundary on R. We call $H(f(z)) = \bigcap_{n} \overline{f(z)}$ the cluster set of f(z) at F, where $F_n = E\left[z \in R: \text{dist}(z, F) \leq \frac{1}{n}\right]$. Then

Theorem 3. Let F be a closed set of positive capacity relative R and w=f(z) be a non-constant analytic function. If every point of H(f(z)) is boundedly covered, then H(f(z)) is a set of positive logarithmic capacity.

Since at every point a of H(f(z)), there exists a circle C(a) with radius $\frac{1}{n}$ such that $\sup_{w \in C(a)} n(w) \leq m(n, a)$ and since H(f(z)) is closed, H(f(z)) is contained in the interior of sum of a finite number of circles $C(a_i)$. Hence $n(w) \leq m$ in $G = \sum_i \operatorname{int} C(a_i)$ and

dist
$$(H(f(z)), \partial G) \ge \delta > 0.$$
 (4)

G may consist of a finite number of components. Without loss of generality, we can suppose that *G* does not cover a disc in the *w*-sphere. Then $f^{-1}(G)$ does not fall in a compact set D_0 . On the other hand, $z=f^{-1}(w): w \in \partial G$ does not tend to *F*. If it were not so, $H(f(z)) \cap \partial G \neq 0$. This contradicts (4). Let $G_n = E\left[w: \operatorname{dist}(w, H(f(z))) \leq \frac{1}{n}\right]$. Then $f^{-1}(G_n)$ covers a neighbourhood of *F* and $\operatorname{dist}(F, f^{-1}(\partial G_n)) \geq \delta_n > 0$, as above and $f^{-1}(\partial G_n)$ separates *F* from D_0 . Assume that H(f(z)) is of logarithmic capacity zero. Then $D(U_n(w)) \to 0$ as $n \to \infty$, where $U_n(w)$ is a harmonic function in $G - G_n$ such that $U_n(w) = 0$ on ∂G and $U_n(w) = 1$ on ∂G_n . Consider a continuous function $\tilde{U}_n(z)$ in $R - D_0$ such that

116

 $\widetilde{U}_n(z)=0$ in $R-D_0-f(G)$ and $\widetilde{U}_n(z)=U_n(f^{-1}(w))$ in $f^{-1}(G-G_n)$. Then $D(\widetilde{U}_n(z)) \leq m(D(U_n(z)))$. Let $V_n(z)$ be a harmonic function in $R-D_0-F_{\delta_n}$ such that $V_n(z)=0$ on ∂D_0 , $V_n(z)=1$ on ∂F_{δ_n} and $V_n(z)$ has the minimal Dirichlet integral, where $F_{\delta_n}=E[z \in R: \operatorname{dist}(z,F) \leq \delta_n]$ and $F_{\delta_n} \subset f^{-1}(G_n)$. Then by the Dirichlet principle $D(\widetilde{U}_n(z)) \geq D(V_n(z))$. Let $n \to \infty$. Then $D(V(z)) \to 0$. This means that F is a set of capacity zero relative R. This is a contradiction. Hence we have the theorem.

Theorem 4. Let D_z be a simply connected domain in the z-plane. Let E_z be a closed set of positive logarithmic capacity. Suppose at every point z of E_z , there exists a sector S(z) such that int $S(z) \subset D$. Map D conformally onto |w| < 1. Then the image E_w of E_z is also of positive logarithmic capacity.

Let w=f(z) be the mapping function. Let $\Omega(\square D)$ be a simply connected domain in the proof of Theorem 1. Put $E=\partial\Omega\cap E_z$. Then E is closed and is of positive capacity relative Ω . Then Ω is mapped onto a domain $f(\Omega)$ in the circle |w|<1. Let $l(p)(\square \Omega): p \in E$ be a path tending to p. Then f(l(p)) tends to a point q on |w|=1 by Riesz's theorem. Let E'_w be the set of points q such that there exists a curve $(\Omega \supseteq)l(p): p \in E$ and $\lim_{\substack{x \neq p\\x \in l(p)}} f(z)=q$. Then E'_w is closed. In fact, F_w

 $=\overline{f(\partial\Omega)}\cap \Gamma: \Gamma = [|w|=1]$ is closed. Clearly $E'_w \subset F_w$. Let q be a point of F_w . Then there exists a sequence $\{w_i\}: w_i = f(z_i), w_i \in f(\Omega)$ and $\lim w_i = q$. Consider $f^{-1}(w_i) \subset Q$. Then $f^{-1}(w_i)$ has limit points only on E. Choose a subsequence $f^{-1}(w'_i)$ of $\{f^{-1}(w_i)\}$ such that $f^{-1}(w_i)$ $\rightarrow z_0 \in E$. Since every point of $\partial \Omega$ is accessible, connect $f^{-1}(w'_i), f^{-1}(w''_i) \cdots$ by a curve $l \subset \Omega$. Then f(z) has limit q as z tends to z_0 along l. Hence $F_w \subset E'_w$. Next we show $\bigcap_{n>0} \overline{f(z)}_{z \in (E_n \cap D)} = E'_w$, where $E_n = E\left[z : \operatorname{dist}(z, E) \leq \frac{1}{n}\right]$. It is clear $E'_w \subset H(f(z))$. Let $w_0 \in H(f(z))$. Then there exists a sequence $\{z_i\}$ such that $\{z_i\}$ tends to E and $f(z_i) \rightarrow w_0$. Since E is closed, we can find a point $z_0 \in E$ and a subsequence $\{z'_i\}$ of $\{z_i\}$ such that $\lim z'_i = z_0$. Connect z'_i by a curve l in Ω such that l tends to z_0 , for every point of $\partial \Omega$ is accessible in Ω . Then $f(z) \to w_0$ as $z \to z$ along l. Hence $w_0 \in E'_w$ and $E'_w = H(f(z))$. Now $E(\subseteq E_z)$ is a set of positive capacity relative Ω by Theorem 1, since E is a set of positive logarithmic capacity. Hence E'_w is of positive logarithmic capacity by Theorem 3. Hence the image $E_w(\Box E'_w)$ of E_z is of positive logarithmic capacity.