32. Correspondence of Sets on the Boundaries of Riemann Surfaces

By Zenjiro Kuramochi

Mathematical Institute, Hokkaido University
(Comm. by K. Kunugi, m.J.A., March 12, 1960)
Let D_{z} be a domain in the z-plane. Let $f(z)=u(z)+i v(z): w=u+i v$ be a topological mapping of D_{z} into D_{w} in the w-plane. If $\varlimsup_{|z z| \rightarrow 0} \frac{|d w|}{|d z|}<M$ in D_{z} and $f(z)$ is a quasi-conformal mapping almost everywhere in D_{z} whose dilatation quotient $<K$ in D_{z}, we say that $f(z)$ is an almost quasi-conformal mapping and abbreviate it to A.Q.C. Let $U(z)$ be a harmonic function in D_{z} such that the Dirichlet integral $D(U(z))$ is finite and let $f(z)=w$ be an A.Q.C. with dilatation quotient $<K$. Then

$$
\begin{equation*}
\frac{1}{K} D(U(z)) \leqq D(U(f(w))) \leqq K D(U(z)) \tag{1}
\end{equation*}
$$

Example. Let D and D^{\prime} be simply connected domains whose boundary consists of segments $\overline{A B}, \overline{B D}, \overline{D E}, \overline{E F}, \overline{F A}$ and $\overline{A B^{\prime}}, \overline{B^{\prime} C^{\prime}}$, $\overline{C^{\prime} D^{\prime}}, \overline{D^{\prime} E}, \overline{E F}, \overline{F A}$, where $A=\alpha e^{i\left(\theta_{2}+\frac{\pi}{2}\right)}+\beta e^{i \theta_{1}}, \quad B=-r+i \alpha \sin \theta_{2}$ $+i \beta \sin \theta_{1}, C=-r+i \beta \sin \theta_{2}, D=-r, E=0, F=\alpha e^{i\left(\pi-\theta_{2}\right)}, D^{\prime}=r, C+C^{\prime}$ $=2 F, B+B^{\prime}=2 A$.

Put $v(z)=y, \quad \frac{u(z)+x}{2}=y \cot \theta_{2} \quad$ in $C D E F$ and $\quad v(z)=y, \quad \frac{u(z)+x}{2}=(y-h) \cot \theta_{1}, \quad h=\alpha \sin \theta_{2}$, in $C F A B$.
Then $|d w|=\left(1+2 \cot ^{2} \theta_{i}(\sin (\psi+2 \varphi))\right)^{\frac{1}{2}}|d z|$, where

$$
d x=d z \cos \varphi, \quad d y=d z \sin \varphi \quad \text { and } \quad \psi=\frac{\pi}{2}-\theta_{i}
$$

Then we see that the above mapping is quasi-conformal in the interior of $C D E F$ and in the interior of $C F A B$ and is an A.Q.C. in the closure of $A B D E F$.

Let R be a Riemann surface with positive boundary and $\left\{R_{n}\right\}$ be its exhaustion with compact relative boundaries $\left\{\partial R_{n}\right\}(n=0,1,2, \cdots)$.

Let B be the ideal boundary of R. Assume that a metric δ is given on $R+B$, for instance, Martin's metric. Let F be a closed set in B. Put $F_{m}=E\left[z \in R+B: \delta(z, F) \leqq \frac{1}{m}\right]$. Then $F=\bigcap_{m} F_{m}$. Let $U_{m, n, n+i}(z)$ be a harmonic function in $R-\left(\left(R_{n+i}-R_{n}\right) \cap F_{m}\right)-R_{0}$ such that $U_{m, n, n+i}(z)=0$ on $\partial R_{0}, U_{m, n, n+i}(z)=1$ on $\partial\left(\left(R_{n+i}-R_{n}\right) \cap F_{m}\right)$ and $\frac{\partial U_{m, n, n+i}(z)}{\partial n}=0$ on $\partial R_{n+i}-F_{m}$. Then $U_{m, n, n+i}(z) \rightarrow U_{m, n}(z)$ in mean as $i \rightarrow \infty, U_{m, n}(z) \rightarrow U_{m}(z)$ in mean as $n \rightarrow \infty$ and $U_{m}(z) \rightarrow U(z)$ in mean as $m \rightarrow \infty$. We call $D(U(z))$ $=\int_{\partial R_{0}} \frac{\partial U(z)}{\partial n} d s$ the capacity ${ }^{1)}$ of F relative $R-R_{0}$. Then we see

$$
\begin{equation*}
\operatorname{Cap}\left(\sum F_{i}\right) \leqq \sum \operatorname{Cap}\left(F_{i}\right) \tag{2}
\end{equation*}
$$

for closed sets F_{i} and that $\operatorname{Cap}(F)>0$ or $=0$ does not depend on R_{0} so long as R_{0} is compact.

Theorem 1. Let D be a domain in the z-plane. Let F_{z} be a closed set of positive logarithmic capacity on ∂D. Assume that at every point $z \in F_{z}$, there exists a sector $S(z)$ with its vertex at z, with a positive radius and a positive aperture such that int $S(z) \subset D$. Then F_{z} is a set of positive capacity relative $D-D_{0}$, where D_{0} is a compact disc in D.

Proof. Let $E_{n, i}$ be the set of points z such that a sector $S(z)$ with its vertex at z and $S(z)$ satisfies the following conditions:

1) $\operatorname{int} S(z) \subset D$.
2) radius of $S(z) \geqq \frac{1}{n}$.
3) $\frac{1}{n} \leqq$ aperture of $S(z)<\pi-\frac{1}{n}$.
4) $\frac{2 \pi}{32 n} i \leqq$ argument of the half line of $S(z)<\frac{2 \pi}{32 n}(i+1)$.

Then $F_{z}=\sum_{n=1}^{\infty} \sum_{i}^{n} E_{n, i}$. Then there exist numbers n_{0} and i_{0} such that $E_{n_{0}, i_{0}}$ is of positive logarithmic capacity. And there exists a closed subset $F^{\prime}\left(\subset E_{n_{0}, i_{0}}\right)$ of positive logarithmic capacity. Let $F^{\prime \prime}$ be the set of points z such that the argument of the half line of $S(z)=\frac{2 \pi i_{0}}{32 n_{0}}$, radius of $S(z) \geqq \frac{1}{n_{0}}$ and its aperture $\geqq \frac{\pi}{32 n}$. Then by 4) $F^{\prime \prime} \supset E_{n_{0}, i_{0}}$. Therefore we can suppose that at every point z of F^{\prime}, there exists a sector $S(z)$ with aperture $2 \theta\left(\frac{\pi}{2}>2 \theta>0\right)$, radius $=r$ its vertex at z and the argument of the half line is $\frac{\pi}{2}$. We divide the z-plane into an enumerably infinite number of rectangles such that

[^0]\[

$$
\begin{gathered}
\frac{r}{16} i \cot \theta \leqq x \leqq \frac{r}{16}(i+1) \cot \theta, \quad \frac{r}{16} j \leqq y \leqq \frac{r}{16}(j+1) \\
i, j=0, \pm 1, \pm 2, \cdots .
\end{gathered}
$$
\]

Then there exists at least a rectangle such that the subset F of F^{\prime} contained in the rectangle is of positive logarithmic capacity. Without loss of generality, we can suppose that the rectangle R is $E[z: 0 \leqq x$ $\left.\leqq \frac{r}{16}, \quad 0 \leqq y \leqq \frac{r}{16} \cot \theta\right]$. Let R be a rectangle $E\left[z:-\frac{r}{16} \leqq x \leqq \frac{2 r}{16}\right.$, $\left.-\frac{r}{2} \cot \theta \leqq y \leqq \frac{r}{2} \cot \theta\right]$. Let p be a point of F. Then $\operatorname{int} S(p) \subset D$, whence there exists no point of F in R^{\prime} which has the same projection as that of p. Hence y-coordinate y of p can be considered as a onevalued function $y=f(x)$ of the projection x of p. It is clear

$$
\left|\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\right| \leqq \cot \theta \quad \text { for } p\left(z_{1}\right) \text { and } p\left(z_{2}\right) \in F
$$

and $S(p): p \in F$ contains the rectangle $E\left[z:-\frac{r}{16} \leqq x \leqq \frac{2 r}{16}, \frac{r}{2} \cot \theta>y\right.$ $\left.>\frac{r}{8} \cot \theta\right]$.

Let Ω be the domain containing every $S(z): z \in F$ and contained in R^{\prime}. Then Ω is bounded by segments which are boundaries of $S(z): z \in F$ and the boundary of R^{\prime} and F. By (3) Ω is simply connected $\subset D$ and its boundary is rectifiable. We show that F is of positive capacity relative Ω which implies that $F_{z}(\supset F)$ is of positive capacity relative D.

Case 1. F is of positive linear measure. In this case map Ω conformally into $|\xi|<1$. Then F is mapped onto a set of positive linear measure. Hence $\lim _{m} \omega_{m}(z)>0$, where Ω_{0} is a compact set in Ω and $\omega_{m}(z)$ is a harmonic function in $\Omega-\Omega_{0}-F_{m}$ such that $\omega_{m}(z)=0$ on $\partial \Omega_{0}+\partial \Omega-F_{m}$ and $\omega_{m}(z)=1$ on ∂F_{m} and $F_{m}=E\left[z: \operatorname{dist}(z, F) \leqq \frac{1}{m}\right]$, whence $U(z)$ $=\lim _{m} U_{m}(z) \geqq \lim _{m} \omega_{m}(z)>0$, where $U_{m}(z)$ is a harmonic function in $\Omega-\Omega_{0}$ $-F_{m}$ such that $U_{n}(z)=0$ on $\partial \Omega_{0}, \frac{\partial U_{m}(z)}{\partial n}=0$ on $\partial \Omega-F_{m}$ and $U_{m}(z)=1$ on ∂F_{m}. Thus F is of positive capacity.

Case 2. F is of linear measure zero. Let F_{x} be the projection of F. Then the function $y(x)\left(x \in F_{x}\right)$ satisfies the Lipsitz's condition, whence F_{x} is also closed. Now the complementary set of F with respect to $y=0,0 \leqq x \leqq \frac{r}{16}$ is composed of an enumerably infinite number of open intervals $I_{i}\left(a_{i}<x<b_{i}\right)$. Let Ω_{i} be the subdomain of Ω lying between $x=a_{i}$ and $x=b_{i}$. Let Γ be the boundary of $\partial \Omega$ consisting of F and segments which are boundaries of $S(z): z \in F$. Then Γ can be
considered as a graph of $y=g(x):-\frac{r}{16}<x<\frac{2 r}{16}$ and it is clear that $g(x)$ also satisfies the Lipsitz's condition

$$
\left|-\frac{g\left(x_{1}\right)-g\left(x_{2}\right)}{x_{1}-x_{2}}\right|<\cot \theta
$$

Let Γ_{1}, Γ_{2} and Γ_{3} be boundaries of Ω lying on $y=\frac{r}{2} \cot \theta, x=-\frac{r}{16}$ and $x=\frac{2 r}{26}$ respectively. Let $w=f(z)=u(z)+i v(z): u(z)=x, v(z)=2 g(x)$ $-y$ be the mapping. Then $f(z)$ is continuous and univalent and $\sup _{|\alpha z| \rightarrow 0}\left|\frac{d w}{d z}\right|<M_{1}(\theta)=\left(1+2 \cdots \cot \theta / 1+\cot ^{2} \theta\right)^{\frac{1}{2}}$ and A.Q.C with dilatation quotient $\leqq M_{2}(\theta)=\left(\left(1+2 \cot \theta / \operatorname{cosec}^{2} \theta\right) /\left(1-2 \cot \theta / \operatorname{cosec}^{2} \theta\right)\right)^{\frac{1}{2}}$ in \sum_{i} int Ω_{i}. On the other hand, $\sum_{\partial \Omega_{i}}$ is a set of areal measure zero. Thus $f(z)$ is an A.Q.C. $f(\Omega)$ contains a rectangle : $-\frac{r}{16} \leqq x \leqq \frac{2 r}{16}, \frac{-r \cot }{4} \leqq y<0$ by $r \cot \theta\left(1-2\left(\frac{1}{2}-\frac{1}{8}\right)\right)=-\frac{r}{4} \cot$.

Assume that F is of capacity zero relative Ω. Then $D\left(U_{n}(z)\right) \rightarrow 0$, where $U_{n}(z)$ is a harmonic function in $\left.\Omega-F_{n}: F=E_{\llcorner }^{\ulcorner } z: \operatorname{dist}(z, F) \leqq \frac{1}{n}\right]$ such that $U_{n}(z)=0$ on $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}, U_{n}(z)=1$ on ∂F_{n} and $\frac{\partial U_{n}(z)}{\partial n}=0$ on $\Gamma-F_{n}$. Now $\partial F_{n}+f\left(\partial F_{n}\right)$ encloses F. Put $\widetilde{U}_{n}(z)=U_{n}(z)$ in $\Omega-F_{n}$, $\widetilde{U}_{n}(z)=U_{n}\left(f^{-1}(z)\right)$ in $f\left(\Omega-F_{n}\right)$. Then $\widetilde{U}_{n}(z)$ is continuous in $\left(\Omega-F_{n}\right.$ $\left.+f\left(\Omega-F_{n}\right)\right), \widetilde{U}_{n}(z)=0$ on $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+f\left(\Gamma_{1}+\Gamma_{2}+\Gamma_{3}\right)$ and $\widetilde{U}_{n}(z)=1$ on $\partial F_{n}+f\left(\partial F_{n}\right)$. Then by (1) $D\left(\widetilde{U}_{n}(z)\right) \leqq D\left(U_{n}(z)\right)\left(1+M_{2}(\theta)\right)$. Let $U_{n}^{*}(z)$ be a harmonic function in $\left(\Omega-F_{n}\right)+f\left(\Omega-F_{n}\right)$ such that $U_{n}^{*}(z)=0$ on $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+f\left(\Gamma_{1}+\Gamma_{2}+\Gamma_{3}\right)$ and $U_{n}^{*}(z)=1$ on $\partial F_{n}+f\left(\partial F_{n}\right)$. Then by the Dirichlet principle

$$
D\left(U_{n}^{*}(z)\right) \leqq D\left(\widetilde{U}_{n}(z)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

On the other hand, $\partial F_{n}+f\left(\partial F_{n}\right)$ encloses F in a domain $\Omega+f(\Omega)$ and the distance between $\left(\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+f\left(\Gamma_{1}+\Gamma_{2}+\Gamma_{3}\right)\right)$ and F is positive. This contradicts that F is of positive logarithmic capacity. Hence F is of positive capacity relative Ω. This implies that $F_{z}(\supset F)$ is of positive capacity relative D.

Let G be a non-compact domain in a Riemann surface R whose relative boundary G consists of at most an enumerably infinite number of compact or non-compact analytic curves clustering nowhere in R. We can construct another Riemann surface \widehat{G} by the process of symmetrization. We proved the following

Theorem. ${ }^{2)}$ Let R be a Riemann surface with null-boundary.

[^1]Let G be a non-compact domain. Then $G+\widehat{G}$ is a Riemann surface uith null-boundary.

As an inverse of the above theorem we have by Theorem 1 the following

Theorem 2. Let R be a Riemann surface of finite genus with positive boundary. Let B^{\prime} be a closed subset of B such that B^{\prime} is of positive capacity relative R. If there exists a sector $S(z) \subset G$ with its vertex at $z \in B^{\prime}$ at every point of B^{\prime}, then $G+\widehat{G}$ is a Riemann surface with positive boundary.

Let $w=f(z): z \in R$ be an analytic function in a Riemann surface R and suppose that the covering surface of $f(z)$ is spread over the w sphere K. Let a be a point of K and K_{ρ} be a spherical disc of radius ρ with a as its centre. Let $n(a)$ be the number of zero of $f(z)-a$ in R.

If

$$
\lim _{\rho \rightarrow 0} \sup _{w \in K_{\rho}} n(w)<\infty,
$$

then a is called a boundedly covered point.
Let F be a closed set on the ideal boundary on R. We call $H(f(z))=\bigcap_{n} \overline{z \in \in_{n}^{\prime}(z)}$ the cluster set of $f(z)$ at F, where $F_{n}=E[z \in R$: $\left.\operatorname{dist}(z, F) \leqq \frac{1}{n}\right]$. Then

Theorem 3. Let F be a closed set of positive capacity relative R and $w=f(z)$ be a non-constant analytic function. If every point of $H(f(z))$ is boundedly covered, then $H(f(z))$ is a set of positive logarithmic capacity.

Since at every point a of $H(f(z))$, there exists a circle $C(a)$ with radius $\frac{1}{n}$ such that $\sup _{w \in O(a)} n(w) \leqq m(n, a)$ and since $H(f(z))$ is closed, $H(f(z))$ is contained in the interior of sum of a finite number of circles $C\left(a_{i}\right)$. Hence $n(w) \leqq m$ in $G=\sum_{i} \operatorname{int} C\left(a_{i}\right)$ and

$$
\begin{equation*}
\operatorname{dist}(H(f(z)), \partial G) \geqq \delta>0 \tag{4}
\end{equation*}
$$

G may consist of a finite number of components. Without loss of generality, we can suppose that G does not cover a disc in the w-sphere. Then $f^{-1}(G)$ does not fall in a compact set D_{0}. On the other hand, $z=f^{-1}(w): w \in \partial G$ does not tend to F. If it were not so, $H(f(z)) \cap \partial G$ $\neq 0$. This contradicts (4). Let $G_{n}=E\left[w: \operatorname{dist}(w, H(f(z))) \leqq \frac{1}{n}\right]$. Then $f^{-1}\left(G_{n}\right)$ covers a neighbourhood of F and $\operatorname{dist}\left(F, f^{-1}\left(\partial G_{n}\right)\right) \geqq \delta_{n}>0$, as above and $f^{-1}\left(\partial G_{n}\right)$ separates F from D_{0}. Assume that $H(f(z))$ is of logarithmic capacity zero. Then $D\left(U_{n}(w)\right) \rightarrow 0$ as $n \rightarrow \infty$, where $U_{n}(w)$ is a harmonic function in $G-G_{n}$ such that $U_{n}(w)=0$ on ∂G and $U_{n}(w)$ $=1$ on ∂G_{n}. Consider a continuous function $\widetilde{U}_{n}(z)$ in $R-D_{0}$ such that
$\widetilde{U}_{n}(z)=0$ in $R-D_{0}-f(G)$ and $\widetilde{U}_{n}(z)=U_{n}\left(f^{-1}(w)\right)$ in $f^{-1}\left(G-G_{n}\right)$. Then $D\left(\widetilde{U}_{n}(z)\right) \leqq m\left(D\left(U_{n}(z)\right)\right.$. Let $V_{n}(z)$ be a harmonic function in $R-D_{0}-F_{\delta_{n}}$ such that $V_{n}(z)=0$ on $\partial D_{0}, V_{n}(z)=1$ on $\partial F_{\delta_{n}}$ and $V_{n}(z)$ has the minimal Dirichlet integral, where $F_{\delta_{n}}=E\left[z \in R: \operatorname{dist}(z, F) \leqq \delta_{n}\right]$ and $F_{\delta_{n}} \subset f^{-1}\left(G_{n}\right)$. Then by the Dirichlet principle $D\left(\widetilde{U}_{n}(z)\right) \geqq D\left(V_{n}(z)\right)$. Let $n \rightarrow \infty$. Then $D(V(z)) \rightarrow 0$. This means that F is a set of capacity zero relative R. This is a contradiction. Hence we have the theorem.

Theorem 4. Let D_{z} be a simply connected domain in the z-plane. Let E_{z} be a closed set of positive logarithmic capacity. Suppose at every point z of E_{z}, there exists a sector $S(z)$ such that $\operatorname{int} S(z) \subset D$. Map D conformally onto $|w|<1$. Then the image E_{w} of E_{z} is also of positive logarithmic capacity.

Let $w=f(z)$ be the mapping function. Let $\Omega(\subset D)$ be a simply connected domain in the proof of Theorem 1. Put $E=\partial \Omega \cap E_{z}$. Then E is closed and is of positive capacity relative Ω. Then Ω is mapped onto a domain $f(\Omega)$ in the circle $|w|<1$. Let $l(p)(\subset \Omega): p \in E$ be a path tending to p. Then $f(l(p))$ tends to a point q on $|w|=1$ by Riesz's theorem. Let E_{ω}^{\prime} be the set of points q such that there exists a curve $(\Omega \supset) l(p): p \in E$ and $\lim _{\substack{z \rightarrow p \\ z \in l(p)}} f(z)=q$. Then E_{w}^{\prime} is closed. In fact, F_{w} $=\overline{f(\partial \Omega)} \cap \Gamma: \Gamma=[|w|=1]$ is closed. Clearly $E_{w}^{\prime} \subset F_{w}$. Let q be a point of F_{w}. Then there exists a sequence $\left\{w_{i}\right\}: w_{i}=f\left(z_{i}\right), w_{i} \in f(\Omega)$ and $\lim _{i} w_{i}=q$. Consider $f^{-1}\left(w_{i}\right) \subset \Omega$. Then $f^{-1}\left(w_{i}\right)$ has limit points only on E. Choose a subsequence $f^{-1}\left(w_{i}^{\prime}\right)$ of $\left\{f^{-1}\left(w_{i}\right)\right\}$ such that $f^{-1}\left(w_{i}\right)$ $\rightarrow z_{0} \in E$. Since every point of $\partial \Omega$ is accessible, connect $f^{-1}\left(w_{i}^{\prime}\right), f^{-1}\left(w_{i}^{\prime \prime}\right) \cdots$ by a curve $l \subset \Omega$. Then $f(z)$ has limit q as z tends to z_{0} along l. Hence $F_{w} \subset E_{w}^{\prime}$. Next we show $\bigcap_{n>0} \overline{f(z)}=E_{z=\left(Z_{n} \cap a\right)}^{\prime}$, where $E_{n}=E\left[z: \operatorname{dist}(z, E) \leqq \frac{1}{n}\right]$. It is clear $E_{w}^{\prime} \subset H(f(z))$. Let $w_{0} \in H(f(z))$. Then there exists a sequence $\left\{z_{i}\right\}$ such that $\left\{z_{i}\right\}$ tends to E and $f\left(z_{i}\right) \rightarrow w_{0}$. Since E is closed, we can find a point $z_{0} \in E$ and a subsequence $\left\{z_{i}^{\prime}\right\}$ of $\left\{z_{i}\right\}$ such that $\lim _{i=\infty} z_{i}^{\prime}=z_{0}$. Connect z_{i}^{\prime} by a curve l in Ω such that l tends to z_{0}, for every point of $\partial \Omega$ is accessible in Ω. Then $f(z) \rightarrow w_{0}$ as $z \rightarrow z$ along l. Hence $w_{0} \in E_{w}^{\prime}$ and $E_{w}^{\prime}=H(f(z))$. Now $E\left(\subset E_{z}\right)$ is a set of positive capacity relative Ω by Theorem 1, since E is a set of positive logarithmic capacity. Hence E_{w}^{\prime} is of positive logarithmic capacity by Theorem 3. Hence the image $E_{w}\left(\supset E_{w}^{\prime}\right)$ of E_{z} is of positive logarithmic capacity.

[^0]: 1) Z. Kuramochi: Mass distributions on the ideal boundary of Riemann surfaces, II, Osaka Math. Jour., 8 (1956).
[^1]: 2) Z. Kuramochi: On covering surfaces, Osaka Math. Jour., 6 (1954).
