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Correspondence of Sets on the Boundaries of
Riemann Surfaces

By Zenjiro KURAMOCHI
Mathematical Institute, Hokkaido University

(Comm. by K. KUNU(I, M.b.A., March 12, 1960)

Let D be a domain in the z-plane. Let f(z)-u(z)+iv(z)" w=u+iv

be a topological mapping of Dz into D. in the w-plane. If lim. dwi <M
,,o dzl

in D and f(z) is a quasi-conformal mapping almost everywhere in D
whose dilatation quotient <K in D, we say that f(z) is an almost
quasi-conformal mapping and abbreviate it to A.Q.C. Let U(z) be a
harmonic function in D such that the Dirichlet integral D(U(z)) is
finite and let f(z)=w be an A.Q.C. with dilatation quotient <K. Then

1D(U(z))<D(U(f(w)))<gD(V(z)). ( 1 )g

Example. Let D and D’ be simply connected domains whose
boundary consists of segments A--, BD, DE, EF, FA and AB’, B’C’,

(+C’D’, D’E, EF, FA, where A e + e’, B r + i sin
+ifl sin , C=-r+ifl sin , D----r, E=0, F=ae-, D--r, C+C
=2F, B+B’--2A.

Put v(z) y, u(z) +____x y cot O. in CDEF
2

and v(z)-y, u(z) +x (y_h) cot 0, h-a sin t%, in CFAB.
2

Then ldwi-(1-b2 cot 0 (sin (-F2)))1/21dzl, where

dx-dz cos , dy-dz sin f# and =--- --t.
2

Then we see that the above mapping is quasi-conformal in the interior
of CDEF and in the interior of CFAB and is an A.Q.C. in the closure
of ABDEF.

Let R be a Riemann surface with positive boundary and {Rn} be
its exhaustion with compact relative boundaries {3R,} (n=0, 1,2,...).
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Let B be the ideal boundary of R. Assume that a metric is given
on R+B, for instance, Martin’s metric. Let F be a closed set in B. Put

I 1 I Then F=F. Let U/(z) be aF--E zR+B (z, F)_

harmonic function in R--((R/--R)F)--Ro such that U,,/(z)=O
on 3R0, U,, (z) 1 on 3((R/, R) F) and U,,/(z) 0 on

3n
3R/--F. Then U,,/(z)-->U,(z) in mean as i-o, U,(z)->U(z)
in mean as n--> o and U(z) --> U(z) in mean as m-->. We call D(U(z))
--_ f3 U(Z) ds the capacity" of F relative R--R0. Then we seen

Cap (] F) ] Cap (F) 2 )
for closed sets F and that Cap (F)0 or =0 does not depend on R0 so
long as R0 is compact.

Theorem 1. Let D be a domain in the z-plane. Let F be a
closed set of positive logarithmic capacity on 3D. Assume that at
every point z e F, there exists a sector S(z) with its vertex at z, with
a positive radius and a positive aperture such that int S(z) D. Then

F is a set of positive capacity relative D--Do, where Do is a compact
disc in D.

Proof. Let E, be the set of points z such that a sector S(z)
with its vertex at z and S(z) satisfies the following conditions:
1) int S(z) D.

2) radius of S(z) 1

13) laperture of S (z) <=-
2 (i+)4) 2-i32nargument of the half line of S(z)< 32n

Then F--, , E,. Then there exist numbers no and i0 such that
--1

E0, is of positive logarithmic capacity. And there exists a closed
subset F’(E.0,o) of positive logarithmic capacity. Let F" be the set

of points z such that the argument of the half line of S(z) -2ri32n0’
radius of S(z)1-- and its apertureS.32n Then by 4)F"E,o,o.

t0
Therefore we can suppose that at every point z of F’, there exists a

sector S(z)with aperture 2(>2>0, radius-r its vertex at z and

the argument of the half line is . We divide the z-plane into an
2

enumerably infinite number of rectangles such that

1) Z. Kuramochi’ Mass distributions on the ideal boundary of Riemann surfaces,
II, Osaka Math. Jour., 8 (1956).
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16r icotOx1-6-r (i+l)cotO, -3=r.y<:l(J+l)
i, 3"=0, +/-1, +/-2,....

Then there exists at least a rectangle such that the subset F of F’
contained in the rectangle is of positive logarithmic capacity. Without

loss of generality, we can suppose that the rectangle R is EIz’O
____r 0 .yr cot t1 Let R ben rectangle EIz’--r--x2r
--r--cot 0yrcot t1. Let p be a point of F. Then int S(p)D,

2 -----2
whence there exists no point of F in R’ which has the same projection
as that of p. Hence y-coordinate y of p can be considered as a one-
valued function y=f() of the projection of p. It is clear

Y--Y [ cot 0 for p(z) and p(z) F
2

and S(p)’peF contains the rectangle Ez’-- r--x< 2r r
16 16’ 2

> __r cot 0.
8

cot t?>y

Let t9 be the domain containing every S(z)" zeF and contained in
R’. Then [2 is bounded by segments which are boundaries of S(z)’zeF
and the boundary of R’ and F. By (3) [2 is simply connected D and
its boundary is rectifiable. We show that F is of positive capacity rela-
tive /2 which implies that F(F) is of positive capacity relative D.

Case 1. F is of positive linear measure. In this case map 2
conformally into 151< 1. Then F is mapped onto a set of positive linear
measure. Hence lim o(z)>0, where 20 is a compact set in/2 and o(z)
is a harmonic function in --tg0--F such that (o(z)--0 on /20q-39--F

and (o(z)-I on 3F and F E z" dist (z, F)=.j, whence U(z)

=lira U(z)lim o(z)>0, where U(z) is a harmonic function in 9--90

--F such that U(z)--O on 3t90, 3U(z)=0 on 3/2--F and U(z)-I
3n

on 3F. Thus F is of positive capacity.
Case 2. F is of linear measure zero. Let F be the projection of

F. Then the function y(x) (x eFt) satisfies the Lipsitz’s condition,
whence F is also closed. Now the complementary set of F with re-

spect to y-0, 0x r is composed of an enumerably infinite number
16

of open intervals I (a<x<b). Let /2 be the subdomain of /2 lying
between x-a and x=b. Let F be the boundary of 3t9 consisting of
F and segments which are boundaries of S(z)" z eF. Then F can be
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considered as a graph of y-g(x)"-r<x< 2_ff_r and it is clear that
16 16

g(x) also satisfies the Lipsitz’s condition

-g(xl)-g(x) Icot 0.
Xl X2

Let F, F. and F be boundaries of [2 lying on y-r--cot 0, x r---
2 16

and x-2--v-r respectively. Let w--f(z)--u(z)+iv(z)" u(z)--x, v(z)--2g(x)
26

--y be the mapping. Then f(z) is continuous and univalent and

,0sup’ldw<M(0)--(I+2... cot0/l+cotO) and A.Q.C with dilatation

quotientM(0)- ((1 +2 cot 0/cosec 0)/(1--2 cot e/cosec 0)) in int

On the other hand, 39 is a set of areal measure zero. Thus f(z)

is an A.Q.C. f(9) contains a rectangle"-x2r, -r cot
16 16 4

by r cot 0 (1--2(--))- cot.4
Assume that F is of capacity zero relative 2. Then D(U,(z))--> O,

where U(z) is a harmonic function in /2--Fn F=E z" dist (z, F)

such that U(z)-O on F+F.+F, U(z)--I on 3F. and 3U,(z)-0 on
3n

F--F. Now 3F+f(3F) encloses F. Put Un(z)-U(z) in 9--F,

(z)-U,(f-(z)) in f(9--F). Then (z) is continuous in

+f(--Fn)), fn(z)--O on F+Ff+F+f(F+F.+F3)and n(z)-I on

3F+f(3F). Then by (1) D(n(Z)) D(U(z))(l +M(t)). Let U*(z)
be a harmonic function in ([2--F)+f([2--F) such that U,*(z)=0 on

F+F+F+f(F+[’.+F) and U,*(z)=l on 3F+f(3Fn). Then by
the Dirichlet principle

D( U*(z)) D( U(z)) ---> 0 as n->

On the other hand, 3F+f(3Fn) encloses F in a domain /2+f(/2) and
the distance between (F+F+F+f(F+F+F)) and F is positive.
This contradicts that F is of positive logarithmic capacity. Hence
F is of positive capacity relative 9. This implies that F(F) is of
positive capacity relative D.

Let G be a non-compact domain in a Riemann surface R whose
relative boundary G consists of at most an enumerably infinite number
of compact or non-compact analytic curves clustering nowhere in R.
We can construct another Riemann surface G by the process of sym-
metrization. We proved the following

Theorem.) Let R be a Riemann surface with null-boundary.

2) Z. Kuramochi: On covering surfaces, Osaka Math. Jour., { (1954).
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Let G be a non-compact domain. Then G-G is a Riemann surface
with null-boundary.

As an inverse of the above theorem we have by Theorem 1 the
following

Theorem 2. Let R be a Riemann surface of finite genus with
positive boundary. Let B’ be a closed subset of B such that B’ is of
positive capacity relative R. If there exists a sector S(z)G with

its vertex at zB’ at every point of B’, then G+G is a Riemann
surface with positive boundary.

Let w=f(z)" zeR be an analytic function in a Riemann surface R
and suppose that the covering surface of f(z) is spread over the w-
sphere K. Let a be a point of K and K, be a spherical disc of radius
p with a as its centre. Let n(a) be the number of zero of f(z)--a
in R.

If lim sup n(w) <

then a is called a boundedly covered point.
Let F be a closed set on the ideal boundary on R. We call

H(f(z))- f(z) the cluster set of f(z) at F, where F--EzeR"
zF

dist (z, F)=j. Then

Theorem :. Let F be a closed set of positive capacity relative R
and w-f(z) be a non-constant analytic function. If every point of
H(f(z)) is boundedly covered, then H(f(z)) is a set of positive loga-
rithmic capacity.

Since at every point a of H(f(z)), there exists a circle C(a)with
radius _1 such that sup n(w)m(n,a) and since H(f(z)) is closed,

H(f(z)) is contained in the interior of sum of a finite number of circles
C(a). Hence n(w)m in G-- int C(a) and

dist (H(.f(z)), 3G)>O. ( 4 )
G may consist of a finite number of components. Without loss of
generality, we can suppose that G does not cover a disc in the w-sphere.
Then f-(G) does not fall in a compact set Do. On the other hand,
z-f-(w)’we3G does not tend to F. If it were not so, H(f(z))3G

0. This contradicts(4). Let G,=EIw’dist(w,H(f(z))).1. Then

f-(Gn) covers a neighbourhood of F and dist (F, f-(3G))>O, as
above and f-(3G) separates F from Do. Assume that H(f(z)) is of
logarithmic capacity zero. Then D(U(w)) 0 as n--> o, where U(w)
is a harmonic function in G-G such that U(w)--O on 3G and U,(w)
=1 on G. Consider a continuous function U(z) in R--Do such that
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Un(z)--O in R--Do-- f(G) and Un(z)- Un(f-l(w)) in f-I(G-Gn). Then

D(U(z))m(D(U(z))). Let V(z) be a harmonic function in R--Do--F
such that V(z)-O on 3D0, V(z)-I on 3F. and V(z) has the minimal
Dirichlet integral, where F--E[zeR" dist (z,F)_ and Ff-(G).
Then by the Dirichlet principle D(U(z))D(Vn(z)). Let n->oo. Then
D(V(z))O. This means that F is a set of capacity zero relative R.
This is a contradiction. Hence we have the theorem.

Theorem 4. Let D be a simply connected domain in the z-plane.
Let E be a closed set of positive logarithmic capacity. Suppose at
every point z of E, there exists a sector S(z) such that int S(z)D.
Map D conformally onto w]<l. Then the image E, of E is also
of positive logarithmic capacity.

Let w--f(z) be the mapping function. Let t?(D)be a simply
connected domain in the proof of Theorem 1. Put E=3t?E,. Then
E is closed and is of positive capacity relative 9. Then tO is mapped
onto a domain f(9) in the circle iwi<l. Let l(p)(#2) "pE be a path
tending to p. Then f(l(p)) tends to a point q on wl-1 by Riesz’s
theorem. Let E be the set of points q such that there exists a curve
(#2)l(p)’pE and limf(z)-q. Then E is closed. In fact, F

f(3tg) F" F-- w i--1 is closed. Clearly EF,. Let q be a point
of F.. Then there exists a sequence {w]’w=f(z), wef(#2) and
lim w-q. Consider f-(w) tg. Then f-(w) has limit points only

on E. Choose a subsequence f-(w) of {f ’(w)} such that f
-+zoeE. Since every point of 3#2 is accessible, connect f-(w), f-(w)
by a curve 9. Then f(z) has limit q as z tends to z0 along 1. Hence

F,E. Nextweshow f(z) --E, where E--E|z dist (z, E) --=|.
:>0 z(lnN D) L "rb A

It is clear EH(f(z)). Let woeH(f(z)). Then there exists a sequence
{z.} such that {z} tends to E and f(z)->Wo. Since E is closed, we can
find a point zoeE and a subsequence {z} of {z} such that limz--z0.
Connect z by a curve in 9 such that tends to z0, for every point
of 39 is accessible in 9. Then f(z)--> Wo as z--> z along 1. Hence w0 eE
and E-H(f(z)). Now E(E) is a set of positive capacity relative
t9 by Theorem 1, since E is a set of positive logarithmic capacity.
Hence E is of positive logarithmic capacity by Theorem 3. Hence
the image E(E) of E is of positive logarithmic capacity.


