No. 4]

53. A Characterization of Holomorphically Complete Spaces

By Ryôsuke IWAHASHI

Mathematical Institute, Nagoya University (Comm. by K. Kunugi, M.J.A., April 12, 1960)

Given a connected complex space X, we denote by A(X) the C-algebra of holomorphic functions on X. A C-homomorphism of A(X) into C which preserves the constants is called a *character* of A(X). Let X^* be the set of all characters of A(X). The functions of A(X) can be considered as functions on X^* . We shall consider X^* as a topological space: the open sets of X^* are those which can be represented as unions of sets of the form $f_1^{-1}(U_1) \cap \cdots \cap f_k^{-1}(U_k)$, where f_1, \cdots, f_k are in A(X), while U_1, \cdots, U_k are open subsets of C ($f^{-1}(U)$ denotes the set of characters χ such that $\chi f \in U$). The space X^* is a Hausdorff space. We assign to each $x \in X$ a point $\theta(x)$ of X^* which is defined by $\theta(x)f = f(x)$ for every $f \in A(X)$. The mapping $\theta: X \to X^*$ is continuous.

Theorem. Let X be a connected complex space. Then X is holomorphically complete if and only if $\theta: X \to X^*$ is a homeomorphism.

For holomorphically complete spaces, see H. Cartan [1] and H. Grauert [2].

Proof. Suppose that X is holomorphically complete. holomorphically separable [2], the mapping θ is injective. a point of X^* . We denote by M the maximal ideal Ker χ . Take $f_1 \neq 0$ in M and decompose the analytic set $V^{(1)} = \{x \in X \mid f_1(x) = 0\}$ of dimension n-1 (X being of dimension n) into irreducible components $V_i^{(1)}$. The family $(V_i^{(1)})$ being locally finite, we can find two points x_i, x_i' in $V_i^{(1)}$ for each i such that all the points are distinct and form an analytic set, of dimension 0, in X. By Theorem B on holomorphically complete spaces [1], we can find a function f in A(X) such that $f(x_i)=0$ and $f(x_i)=1$ for every i. Let $f_2=f-\chi f$. Then $f_2\in M$ is not identically zero on each $V_i^{(1)}$. Decompose the analytic set $V^{(2)} = \{x \in X \mid f_1(x) = f_2(x) = 0\}$ of dimension n-2 into irreducible components and find $f_3 \in M$ as before. The repetition of such processes leads to the analytic set $V^{(n)} = \{x \in X\}$ $f_1(x) = \cdots = f_n(x) = 0$ of dimension 0 in X, where $f_1, \cdots, f_n \in M$. Applying Theorem B again, we can find a function $f \in A(X)$ which takes different values at distinct points of $V^{(n)}$. Let $f_{n+1}=f-\chi f$. By Theorem A [1] we know that any finite subset of A(X) without common zero generates A(X) over itself. Therefore the functions f_1, \dots, f_{n+1} have at least one, and so only one, common zero, say x. For any $f \in M$, then functions f_1, \dots, f_{n+1}, f have the common zero x and so f(x) = 0, that is, $f \in \text{Ker } \theta(x)$. By the maximality of M we conclude $M=\mathrm{Ker}\,\theta(x)$, that is, $\chi=\theta(x)$. Thus the mapping θ is surjective.

Let Ω be an ultra-filter on X^* which converges to a point $\chi \in X^*$. If the ultra-filter $\theta^{-1}\Omega$ does not converge in X, we can find a function $f \in A(X)$ such that f tends to infinity along $\theta^{-1}\Omega$, because X is holomorphically convex. Therefore Ωf converges to infinity, while, f being continuous in X^* , Ωf tends to $\chi f \neq \infty$. This contradiction shows that $\theta^{-1}\Omega$ converges to a point $\overline{x} \in X$. Then Ω converges to $\theta(\overline{x})$ by the continuity of θ and we have $\overline{x} = \theta^{-1}\chi$ by the injectivity of θ . Thus the inverse mapping θ^{-1} is continuous.

We have to prove the converse.

Lemma. A complex space is K-complete if it is holomorphically separable.

Proof of Lemma. Let X be a complex space which is holomorphically separable. We see that, for any compact set K in X, there exists a finite number of functions in A(X) which separates the points of K. For any point $x \in X$, let U be a compact neighborhood of x. Take functions f_1, \dots, f_k which separate the points of U. Denoting by τ the mapping generated by f_1, \dots, f_k of X into C^k , we have $\tau^{-1}\tau(x) \cap U = \{x\}$. Therefore τ is non-degenerate at x. Thus the space X is K-complete.

Now, suppose that $\theta: X \to X^*$ is a homeomorphism. Since θ is injective, X is holomorphically separable. By Lemma we conclude that X is K-complete.

Suppose that X is not holomorphically convex. Then there exist a compact set K with non-compact envelope \widehat{K} of holomorphy and an ultra-filter base $\mathfrak A$ on \widehat{K} which does not converge in X. For each $f\in A(X)$ the ultra-filter base $f(\mathfrak A)$ on the closed disk $\{z\in C\,|\,|z|\leq \sup_K |f|\}$ converges to a uniquely determined point, say χf . We see that the mapping χ of A(X) into C is a character of A(X). Since the mapping θ is surjective, there exists a point x such that $\theta(x)=\chi$. The ultra-filter base $\theta(\mathfrak A)$ converges to χ , and so $\mathfrak A=\theta^{-1}\theta(\mathfrak A)$ converges to $x=\theta^{-1}\chi$. This is a contradiction. Thus X is holomorphically convex.

References

- [1] H. Cartan: Séminaire E. N. S. (1951-1952).
- [2] H. Grauert: Charakterisierung der holomorph-vollständigen komplexen Räume, Math. Ann., 129, 233-259 (1955).