45. Extended Non-Euclidean Geometry

By Tsurusaburo Takasu
(Comm. by Z. Suetuna, m.J.A., April 12, 1960)

In [1-4], I have started to extend all the branches of geometry of the following table by extending the respective transformation group parameters to functions of coordinates:

In this note an extended non-Euclidean geometry will be established. It should be noticed that the extensions of the so-called Cayley-Klein

Poincaré-Klein representation are unified in it by mapping onto each other by an extended Darboux-Liebmann transformation, which is an extended equiform transformation [3].

The extended non-Euclidean geometry so obtained is realized in the differentiable manifolds (atlas) in the sense of S.S. Chern and C. Ehresmann.

1. Extended projective geometry. I have established [4] an extended equi-affine group of transformations

$$
\begin{equation*}
\bar{\xi}^{l}=a_{m}^{l}\left(\xi^{p}\right) \xi^{m}+a_{0}^{l},\left(\left|a_{m}^{l}\left(\xi^{p}\right)\right|=1, a_{0}^{l}=\text { const., } l, m, \cdots=1,2, \cdots, n\right) \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
d \overline{\bar{\xi}^{l}}=a_{m}^{l}\left(\xi^{p}\right) d \xi^{m} \tag{1.2}
\end{equation*}
$$

where ξ^{l} and $\bar{\xi}^{l}$ are II-geodesic parallel coordinates and introduced the extended affine length s of curves by

$$
\begin{equation*}
d s=\left|d \xi d^{2} \xi \cdots d^{n} \xi\right|^{2 / n(n+1)} . \tag{1.3}
\end{equation*}
$$

The ordinary parallel coordinates x^{l} are special kinds of ξ^{l}.
By the inverse transformation

$$
\begin{equation*}
x^{l}=\Omega_{m}^{l}\left(\xi^{p}\right) \xi^{m}+\Omega_{0}^{l}, \quad\left(\left|\Omega_{m}^{l}\left(\xi^{p}\right)\right|=1\right) \tag{1.4}
\end{equation*}
$$

of the extended equi-affine transformation (1.1), the ordinary hyperplane

$$
\begin{equation*}
c_{l} x^{l}+c_{0}=0 \tag{1.5}
\end{equation*}
$$

is transformed into the figure

$$
\begin{equation*}
c_{l} \Omega_{m}^{l}\left(\xi^{p}\right) \xi^{m}+\left(c_{l} \Omega_{0}^{l}+c_{0}\right)=0 \tag{1.6}
\end{equation*}
$$

Writing

$$
\begin{equation*}
\alpha_{m}\left(\xi^{p}\right) \stackrel{\operatorname{def}}{=} c_{l} \Omega_{m}^{l}\left(\xi^{p}\right), \alpha_{0} \stackrel{\text { def }}{=} c_{l} \Omega_{0}^{l}+c_{0} \tag{1.7}
\end{equation*}
$$

for (1.6), we have

$$
\begin{equation*}
\alpha_{m} \xi^{m}+\alpha_{0}=0 . \tag{1.8}
\end{equation*}
$$

Taking ($n+1$) II-geodesic ($n-1$)-flats

$$
\begin{equation*}
\alpha_{m}^{i} \xi^{m}+\alpha_{0}^{i}=0,(i=1,2 \cdots, n+1) \tag{1.9}
\end{equation*}
$$

we set

$$
\begin{equation*}
\rho\left(\xi^{p}\right) \cdot X^{i} \stackrel{\text { def }}{=} \alpha_{m}^{i} \xi^{m}+\alpha_{0}^{i},\left(\rho\left(\xi^{p}\right) \neq 0\right) \tag{1.10}
\end{equation*}
$$

The ratios

$$
\begin{equation*}
X^{1}: X^{2}: \cdots: X^{n}: X^{n+1} \tag{1.11}
\end{equation*}
$$

define a point in the equi-affine space A^{n}.
In order that II-geodesic curves $d^{2} \xi^{l} / d s^{2}=0$ may be transformed into II-geodesic curves $d^{2}\left(\rho \cdot X^{i}\right) \mid d s^{2}=0$, since $d^{2}\left(\rho \cdot X^{i}\right) / d s^{2}=\alpha_{m}^{i} d^{2} \xi^{m} \mid d s^{2}$, we must have

$$
\begin{equation*}
\rho \cdot X^{i}=a^{i} s+c^{i},(i=1,2, \cdots, n+1) \tag{1.12}
\end{equation*}
$$

where a^{i} and c^{i} are constants. Thus we have

$$
\begin{gather*}
X^{i}: X^{j}=\left(a^{i} s+c^{i}\right) /\left(a^{j} s+c^{j}\right) \\
\left(a^{i} c^{j}-a^{j} c^{i}=1 ; i, j=1,2, \cdots, n+1 ; i \neq j\right) \tag{1.13}
\end{gather*}
$$

We will call the ratios (1.13) the II-geodesic projective point coordinates.

The (1.10) may be rewritten:

$$
\begin{equation*}
\rho \cdot X^{i}=\alpha_{m}^{i} a_{l}^{m}\left(x^{p}\right) x^{l}+\alpha_{0}^{i},\left(\left|a_{l}^{m}\left(x^{p}\right)\right|=1\right) \tag{1.14}
\end{equation*}
$$

which we will call an extended projective transformation. By (1.2), there exists $d \xi^{l}$ in A^{n+1} such that

$$
d \xi^{i}=\alpha_{m}^{i} a_{q}^{m}\left(x^{p}\right) d x^{q}+\alpha_{0}^{i} d 1
$$

Hence we may identify $d \xi^{i}$ with $d\left(\rho \cdot X^{i}\right)$:

$$
\begin{equation*}
d\left(\rho \cdot X^{i}\right)=d \xi^{i} . \tag{1.15}
\end{equation*}
$$

Similarly, for $\alpha_{j}^{i}\left(X^{k}\right) d X^{j},\left(\left|\alpha_{j}^{i}\left(X^{k}\right)\right|=1\right)$, we have

$$
\begin{equation*}
d \bar{\xi}^{i}=\alpha_{j}^{i}\left(X^{k}\right) d X^{j},(\rho \neq 0 ; j, k=1,2, \cdots, n+1), \tag{1.16}
\end{equation*}
$$

whence, quite as in the case of (1.1), we have

$$
\begin{equation*}
\overline{\xi^{i}}=\alpha_{j}^{i}\left(X^{k}\right) X^{j}+\alpha_{0}^{i},\left(\alpha_{0}^{i}=\text { const. }\right) \tag{1.17}
\end{equation*}
$$

so that

$$
\begin{equation*}
\rho \cdot \bar{X}^{i}=\alpha_{j}^{i}\left(X^{k}\right) X^{j}, \quad\left(\rho \neq 0 ;\left|\alpha_{j}^{i}\left(X^{k}\right)\right|=1 ; \rho \cdot \bar{X}^{i}=\bar{\xi}^{i}-\alpha_{0}^{i}\right) . \tag{1.18}
\end{equation*}
$$

In the case $n=1$, by (1.12), we have

$$
\begin{equation*}
\bar{\delta}=\left(a^{1} s+c^{1}\right) /\left(a^{2} s+c^{2}\right),\left(a^{1} c^{2}-a^{2} c^{1}=1\right) \tag{1.19}
\end{equation*}
$$

where we have put $\bar{\delta}=X^{1} / X^{2}$. Thus we may interpret s and \bar{s} as double ratio coordinates on the II-geodesic curves.

We will call (1.18) an extended projective transformation. The totality of the extended projective transformations forms a group, which we will call the extended projective group. It contains the ordinary projective group as a subgroup. The geometry under the extended projective group will be called the extended projective geometry.
2. Extended Cayley-Klein representation. A II-geodesic hyperquadric

$$
\begin{equation*}
X^{i} X^{i}=0 \tag{2.1}
\end{equation*}
$$

will be called the Absolute.
The ratios of u_{i} such that

$$
\begin{equation*}
\sigma \cdot u_{i}=X^{i},(\sigma \neq 0) \tag{2.2}
\end{equation*}
$$

will be called the projective II-geodesic ($n-1$)-flat coordinates. (2.1) becomes

$$
\begin{equation*}
u_{i} u_{i}=0 . \tag{2.3}
\end{equation*}
$$

The II-geodesic projective coordinates $\left(X^{i}\right)$ and $\left(u_{i}\right)$ shall be normalized as follows:

$$
\begin{equation*}
X^{i} X^{i}=k^{2} . \quad \mid \quad u_{i} u_{i}=1 \tag{2.4}
\end{equation*}
$$

The extended projective transformations $\alpha_{j}^{i}\left(X^{k}\right)$ will be called the extended non-Euclidean transformations. The totality of them forms a group, which we will call the extended non-Euclidean group. An extended non-Euclidean geometry belongs to it.

The distance d The angle ϕ between two points $X^{i}, X^{i \prime}$ II-geodesic ($n-1$)-flats u_{i}, u_{i}^{\prime} is given by

$$
\begin{equation*}
\cos \frac{d}{k}=\frac{X^{i} X^{i \prime}}{\sqrt{X^{i} X^{i}} \sqrt{X^{i \prime} X^{i \prime}}} \cdot \left\lvert\, \quad \cos \phi=\frac{u_{i} u_{i}^{\prime}}{\sqrt{u_{i} u_{i}} \sqrt{u_{i}^{\prime} u_{i}^{\prime}}}\right. \tag{2.5}
\end{equation*}
$$

All the theorems and theories in the classical non-Euclidean geometry are retained under the extended non-Euclidean group.
3. Extended Poincaré-Klein representation. Take a II-geodesic hypersphere

$$
\begin{equation*}
\xi^{p} \xi^{p}=k^{2},(p=1,2, \cdots, n) \tag{3.1}
\end{equation*}
$$

where ξ^{p} are the II-geodesic rectangular coordinates [3] and name it
the Absolute.
Apply the extended equiform transformation [2]

$$
\begin{equation*}
\bar{\xi}^{p}=2 k^{2} \xi^{p} /\left(\xi^{p} \xi^{p}+k^{2}\right) \tag{3.2}
\end{equation*}
$$

to the II-geodesic ($n-1$)-flat

$$
\begin{equation*}
u_{p} \bar{\xi}^{p}+u_{n+1}=0 . \tag{3.3}
\end{equation*}
$$

Then the II-geodesic hypersphere

$$
\begin{equation*}
2 k^{2}\left(u_{p} \xi^{p}\right)+u_{n+1}\left(\xi^{p} \xi^{p}+k^{2}\right)=0 \tag{3.4}
\end{equation*}
$$

which meets (3.1) orthogonally, is obtained. In this way we obtain an extended Poincaré-Klein representation of the extended non-Euclidean space.

The (3.4) may be rewritten:

$$
\begin{equation*}
2 k^{2}\left(u_{p} \xi^{p}+u_{n+1}\right)+u_{n+1}\left(\xi^{p} \xi^{p}-k^{2}\right)=0 . \tag{3.5}
\end{equation*}
$$

4. An extended Darboux-Liebmann transformation. Considering the II-geodesic hypersphere

$$
\begin{equation*}
\bar{\xi}^{p} \bar{\xi}^{p}=k^{2} \tag{4.1}
\end{equation*}
$$

as Absolute and the II-geodesic ($n-1$)-flat

$$
\begin{equation*}
u_{p} \bar{\xi}^{p}+u_{n+1}=0 \tag{4.2}
\end{equation*}
$$

as the II-geodesic ($n-1$)-flat of the extended non-Euclidean space, we obtain an extended Cayley-Klein representation $\bar{P}\left(\bar{\xi}^{p}\right)$.

Considering the II-geodesic hypersphere

$$
\begin{equation*}
\xi^{p} \xi^{p}=k^{2} \tag{4.3}
\end{equation*}
$$

as Absolute and the II-geodesic hypersphere

$$
\begin{equation*}
2 k^{2}\left(u_{p} \xi^{p}+u_{n+1}\right)+u_{n+1}\left(\xi^{p} \xi^{p}-k^{2}\right)=0 \tag{4.4}
\end{equation*}
$$

as a II-geodesic ($n-1$)-flat of the extended non-Euclidean space, we obtain an extended Poincaré-Klein representation $P\left(\xi^{p}\right)$.

The (4.4) is the map of the (4.2) by (3.2) and is a II-geodesic ($n-1$)-flat.

The transformation (3.2) is a mutual mapping of the extended Cayley-Klein representation and will be called the extended Darboux-Liebmann transformation.

References

[1] T. Takasu: Erweiterung des Erlanger Programms durch Transformationsgruppenerweiterungen, Proc. Japan Acad., 34, 471-476 (1958).
[2] T. Takasu: Extended Euclidean geometry and equiform geometry under the extensions of respective transformation groups. I, Yokohama Math. J., 6, 89177 (1958).
[3] T. Takasu: Ditto. II, Yokohama Math. J., 7, 1-88 (1959).
[4] T. Takasu: Extended affine geometry. I, Yokohama Math. J., 7, 153-185 (1959).

