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Consider a semigroup G satisfying
(1.1) There is at least one (left identity) eeG such that ea--a

for all aeG.
(1.2) For any aeG and for any left identity eeG there is at

least one beg such that ab--e.
A.H. Clifford [1] and H.B. Mann 2] investigated such systems

and they obtained the same result" the system is the direct product
of a right singular semigroup and a group. Clifford called such
systems multiple groups, Mann called them (l, r) systems, but we
call them right groups. In this note we shall define an M-groupoid
as generalization of right groups and shall study the conditions for
M-groupoids.

DEFINITION. An M-groupoid S is a groupoid’ (Bruck [4])which
satisfies the following conditions"

(2.1) There is at least one eeS such that ex--x for all xeS.
(2.2) If y or z is a left identity of S, then (xy)z=x(yz) for all

zeS.
(2.3) For any xeS there is a unique left identity e (which may

depend on x) such that xe=x.
THEOREM 1. An M-groupoid S is the direct product of a right

singular semigroup and a groupoid with a two-sided identity, and
conversely.

For the proof of this theorem we use the following lemma"
LEMMA. If and only if a groupoid S has two orthogonal de-

compositions, it is isomorphic to the direct product of the two factor
groupoids obtained from the two decompositions.

Clifford introduced the notation "orthogonal decomposition" in
his paper 1], p. 869, but he did not apply the principle directly.
Although this lemma is obvious according to K. Shoda [3J, p. 158,
we can easily prove it with elementary method.

DEFINITION. A right group S is a groupoid which satisfies the
following conditions"

(3.1) For any x, y, zS, (xy)z-x(yz)
(3.2) For any a, be S, there is a unique ceS such that ac--b.

1) The detail proof will be given elsewhere.
2) A groupoid is a system in which a binary operation is defined.
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Using Theorem 1, we have
THEOREM 2. A right group is isomorphic to the direct product

of a right singular semigroup and a group, and conversely.
Consider various conditions (4.1) through (4.8) and the seven

systems, I through VII, of the conditions as follows:
rl means "there is uniquely"
(4.1) Va, b, c (ab)c=a(bc)
(4.2) Va, bic: ac--b
(4.3) ab ac b-- c
(4.4) Va, b tc ac- b
(4.5) :i/e: Va=ea-a
(4.6) Va, V (left identity) e oc: ac=e
(4.7) Vao[c, [ (left identity) e: ac--e
(4.8) Vaoc, t (left identity) e: ca--e
I {(4.1), (4.2)}, II {(4.1), (4.3), (4.4)},
III {(4.1), (4.4), (4.5)}, IV: {(4.1), (4.5), (4.6)},
V {(4.1), (4.5), (4.7)}, VI: {(4.1), (4.5), (4.8)},
VII: S----RG where R is right singular semigroup and G is

a group.
Each of I through VII is characterization of an M-groupoid. In

fact we can show
II I VII III IV V VI I.

Furthermore consider the following conditions"
(4. 9) If e and f are idempotents, then ef-f.
(4.10) S is the set union of some groups.
VIII: {(4.1), (4.9), (4.10)}
THEOREM 3. A groupoid S is a right group if and only if S

satisfies VIII.
For the proof of this theorem, we may show VIII=VI and

VII VIII.
Adjoin the condition "there is at least one left identity e," to

the characterizations I through VI if it is not already included; and
replace associativity by the weakened associative law (2.2).

Denote the new systems by I’ through VI’ respectively.
With a counter example, we can show that I’ through VI’ are

not necessary conditions for M-groupoids; I’ and II’ are both suffi-
cient conditions, but IV’ through VI’ are not sufficient conditions;
while we have no conclusion yet with respect to sufficiency of III’.

Now consider the following modifications VIIL’ of VIII"
VIII: {(4.1), (2.2), (4.9), (5.4)}

where (5.4) means that S is the union of disjoint groupoids each. of
which has a two-sided identity.

Further replace (5.4) by a stronger condition (5.5):
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VIII: {(4.1), (2.2), (4.9), (5.5)]
where (5.5) says: There is a decomposition [ S. ]a) of S such that each
S. is a groupoid with a two-sided identity.

Then we can show that VIII; is not a sufficient condition to
determine an M-groupoid, while we have

THEOREM 4. VIII characterizes an M-groupoid.
Necessity is clear. For the proof of sufficiency we may show

that VIII implies (2.3).
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3) A decomposition means a partition forming a factor groupoid.


