172. Semigroups Whose Regular Representation is a Group¹⁾

By J. L. CHRISLOCK

University of California, Davis, Calif., U.S.A. (Comm. by Zyoiti SUETUNA, M.J.A., Dec. 12, 1964)

The set of all mappings ρ_x , defined by $a\rho_x = ax$, is called the regular representation of S. The purpose of this note is to determine all semigroups whose regular representation is a group.

A left group is a semigroup with a right identity and with left solvability. In [1] Clifford proved that any left group is a direct product GxL of a group G and a left zero semigroup L. See [3] for other equivalent definitions.

Lemma 1. If T is the regular representation of a left group GxL, then $T\simeq G$.

Lemma 2. If S is a semigroup and if T is its regular representation, then T is a permutation group if and only if S is a left group.

Lemma 3. If T is a permutation group on a set S, then there exists a binary operation on S such that S is a semigroup with T as its regular representation if and only if T satisfies the condition that, for all $\alpha, \beta \in T$ and for all $x \in S, x\alpha = x\beta$ implies that $\alpha = \beta$.

To demonstrate the binary operation in Lemma 3, we let $\{S_i\}$ be the collection of transitivity components of T. We then select from each S_i an element e_i . Now, for each $x \in S_i$ there exists, by assumption, a unique element $\alpha \in T$ such that $e_i\alpha = x$. Denoting this α by $x\varphi_i$, we get a mapping, for each *i*, from S_i into T. The operation $x \cdot y = x(y\varphi_i)$ if $y \in S_i$, makes S a semigroup with T as its regular representation.

If T is a transformation semigroup on a set S, let S^* be the set of all elements of S which are in the range of some member of T, and let T^* be the set of all elements of T restricted to S^* .

Lemma 4. If T is a transformation group on a set S, then T^* is a permutation group on S^* .

Theorem 1. If T is a transformation group on a set S, then there exists a binary operation on S such that S is a semigroup with T as its regular representation if and only if T satisfies the

¹⁾ This paper was presented by the author at the 1964 Summer Meeting of the American Mathematical Society at Amherst. The detailed proof will appear elsewhere.

condition that, for all α , $\beta \in T$ and for all $x \in S$, $x\alpha = x\beta$ implies $\alpha = \beta$.

Definition. Let S be a semigroup. For each $x \in S$, let A_x be a set containing x such that the sets $A_x, x \in S$, are pairwise disjoint. Let $S' = \bigcup \{A_x : x \in S\}$, and define $a \cdot b = xy$ where $a \in A_x$ and $b \in A_y$. The semigroup (S', \cdot) is called an inflation of S.

Theorem 2. If S is a semigroup and if T is its regular representation, then T is a group if and only if S is an inflation of a left group.

In the proofs of Theorems 1 and 2 we use Lemma 4 so that we may apply Lemmas 2 and 3 respectively.

Corollary. If S is a semigroup such that both its regular representation and its anti-representation [2, p.9] are groups, then S is an inflation of a group.

Theorem 3. If S is a semigroup such that its regular representation T is a group, then T is the maximal group homomorphic image of S.

The author would like to thank Professor Takayuki Tamura for directing this research.

Addendum: Theorem 2 also can be proved by using the concept "*M*-inversive" due to Yamada (see [Kodai Math. Sem. Rep., 7(1955) 49-52] or [1, p.98]). Furthermore the author has obtained that *S* is *M*-inversive if and only if *T* is a right group.

References

- A. H. Clifford: A system arising from a weakened set of group postulates. Annals of Math., 34, 865-871 (1933).
- [2] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, vol.
 1. Math. Surveys, no. 7, Amer. Math. Soc., Providence, R.I. (1961).
- [3] T. Tamura, R. B. Merkel, and J. F. Latimer: The direct product of right singular semigroups and certain groupoids. Proc. Amer. Math. Soc., 14, 118-123 (1963).