151. Commuting Dilations of Self-adjoint Operators

By Tsuyoshi Ando and Makoto Takaguchi
Research Institute of Applied Electricity, Hokkaido University
(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1965)

All operators considered are bounded self-adjoint. Given an operator A on the Hilbert space \mathfrak{E}, an operator T on a superspace $\supseteq \mathfrak{S}$ is called a dilation of A in case $A f=P T f$ for $f \in \mathfrak{S}$, where P is the projection onto \mathfrak{K}. A family \mathfrak{A} of operators on \mathfrak{K} is said to be of $\langle\alpha, \beta\rangle$ type in case there is a commutative family \mathfrak{B} of operators on a superspace such that spectra of every member of \mathfrak{B} are contained in the closed interval $[\alpha, \beta]$ and every member of \mathfrak{H} finds a dilation in \mathfrak{B}. In the above definition the superspace is not fixed throughout, but depends on \mathfrak{A}. In this note an intrinsic description of being of $\langle\alpha, \beta\rangle$ type is given and some of related problems are discussed.

Since under a homothety $A \rightarrow \rho A+\xi I, I$ being the identity operator, the dilation type $\langle\alpha, \beta\rangle$ changes to $\langle\rho \alpha+\xi, \rho \beta+\xi\rangle$ or $\langle\rho \beta+\xi, \rho \alpha+\xi\rangle$ according as ρ is positive or not, most of discussions can be reduced to the cases of positive (i.e., non-negative definite) operators.

A finite family $\left\{A_{1}, \cdots, A_{n}\right\}$ of positive operators is said to be γ-decomposable in case there is a finite family of positive operators, admitting possible multiplicity, such that the total sum is γI and every A_{j} is a sum of a suitable subfamily. The definition can be also stated in this way: there is a positive operator-valued, finitely additive measure, with total measure γI, on a Boolean algebra, whose range contains all A 's. A family of positive operators is said to be γ-decomposable in case every finite subfamily is γ-decomposable.

Given a 1 -decomposable family $\mathfrak{Y}=\left\{A_{\lambda}: \lambda \in \Lambda\right\}$, consider the free Boolean algebra with Λ as the set of generators. By the 1-decomposability, for any finite subset $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ of indices there is a normalized, positive operator valued, finitely additive measure on the subalgebra generated by $\lambda_{1}, \cdots, \lambda_{n}$, which assigns each $A_{\lambda_{j}}$ to λ_{j}. Since the subalgebra is homomorphic image of the whole algebra (see [2, p. 141]), the measure can be extended over the latter. Now standard arguments based on the weak compactness of the set of positive contractions show that \mathfrak{Y} is contained in the range of a normalized, positive operator valued, finitely additive measure on the Boolean algebra. Then the famous theorem of Naimark ([1], [3]) guarantees that a 1-decomposable family admits a commutative family of dilations, consisting of projections, so that it is of $\langle 0,1\rangle$ type.

Conversely if a finite family $\left\{A_{1}, \cdots, A_{n}\right\}$ of positive operators admits a commutative family $\left\{T_{1}, \cdots, T_{n}\right\}$ of dilations, consisting of positive contractions on a superspace, then the family of products $P \cdot B_{1} \cdot B_{n} \cdot P$'s gives a 1 -decomposition of $\left\{A_{1}, \cdots, A_{n}\right\}$, where P is the projection onto \mathfrak{K}, and $B_{j}=T_{j}$ or $=I-T_{j}$, because the positivity of a product $B_{1} \cdot B_{n}$ is a consequence of the commutativity among T 's. Summing up, we obtain

Theorem 1. A family \mathfrak{H} of operators is of $\langle\alpha, \beta\rangle$ type if and only if $\mathfrak{X}-\alpha I$ is $(\beta-\alpha)$-decomposable.

If \mathfrak{N}_{1} and \mathfrak{N}_{2} are γ_{1} - and γ_{2}-decomposable respectively, both $\mathfrak{N}_{1} \cup \mathfrak{N}_{2}$ and $\mathfrak{N}_{1}+\mathfrak{N}_{2}$ are $\left(\gamma_{1}+\gamma_{2}\right)$-decomposable. Thus with use of appropriate homotheties, we can prove

Corollary. If \mathfrak{N}_{1} and \mathfrak{N}_{2} are of $\left\langle\alpha_{1}, \beta_{1}\right\rangle$ and $\left\langle\alpha_{2}, \beta_{2}\right\rangle$ type respectively, both $\mathfrak{U}_{1} \cup \mathfrak{H}_{2}$ and $\mathfrak{N}_{1}+\mathfrak{U}_{2}$ are of $\langle\alpha, \beta\rangle$ type, where either $\alpha=\min \left(\alpha_{1}, \alpha_{2}\right)$ and $\beta=\beta_{1}+\beta_{2}-\alpha$ or $\beta=\max \left(\beta_{1}, \beta_{2}\right)$ and $\alpha=\alpha_{1}+\alpha_{2}-\beta$.

In particular, if the sum of norms of all members of \mathfrak{Z} is bounded by γ, it is of $\langle-2 \gamma, 2 \gamma\rangle$ type, because the family of positive (and negative) parts of members is obviously γ-decomposable (cf. [3]).

Theorem 2. Let \mathfrak{N}_{1} and \mathfrak{N}_{2} be of $\left\langle\alpha_{1}, \beta_{1}\right\rangle$ and $\left\langle\alpha_{2}, \beta_{2}\right\rangle$ types respectively. If every member of $\mathfrak{\Re}_{2}$ commutes with all of $\mathfrak{N}_{1} \cup \mathfrak{H}_{2}$, then $\mathfrak{Y}_{1} \cup \mathfrak{N}_{2}$ is of $\langle\alpha, \beta\rangle$ type with $\alpha=\min \left(\alpha_{1}, \alpha_{2}\right)$ and $\beta=\max$ (β_{1}, β_{2}).

In fact, by Theorem 1, the commutativity assumption, and inductive observation we can assume that \mathfrak{A}_{1} is a finite family, say $\left\{A_{1}, \cdots, A_{n}\right\}$, and \mathfrak{N}_{2} consist of a single member, say B, and further that $\alpha_{1}=\alpha_{2}=0$ and $\beta_{1}=\beta_{2}=1$. Let $\left\{C_{1}, \cdots, C_{m}\right\}$ be a 1-decomposition of $\left\{A_{1}, \cdots, A_{n}\right\}$, then D 's defined by

$$
D_{2 j}=B^{\frac{1}{2}} \cdot C_{j} \cdot B^{\frac{1}{2}} \text { and } D_{2 j_{-1}}=(I-B)^{\frac{1}{2}} \cdot C_{j} \cdot(I-B)^{\frac{1}{2}}
$$

give a 1 -decomposition of $\left\{A_{1}, \cdots, A_{n}, B\right\}$, because

$$
A_{i}=B^{\frac{1}{2}} \cdot A_{i} \cdot B^{\frac{1}{2}}+(I-B)^{\frac{1}{2}} \cdot A_{i} \cdot(I-B)^{\frac{1}{2}}
$$

by the commutativity of A_{i} with $B^{\frac{1}{2}}$ and $(I-B)^{\frac{1}{2}}$.
A pair $\{A, B\}$ of positive contractions is of $\langle-1,1\rangle$ type, because $\{I-A, I-B\}$ is of $\langle 0,2\rangle$ type. $\{A, B\}$ is, however, not necessarily of $\langle 0,1\rangle$ type. In this respect the following theorem is of some interest.

Theorem 3. Let A and B be a projection and a positive contraction respectively. If $\{A, B\}$ is of $\langle 0,1\rangle$ type, A commutes with B.

In fact, since $\{A, B\}$ is 1-decomposable, there are positive operators C and D such that

$$
0 \leq C \leq A, \quad 0 \leq D \leq I-A, \text { and } B=C+D
$$

Since $A f=0$ implies $C f=0$ and A is a projection, it follows $C=C \cdot A$,
hence A commutes with C. In a similar way, $I-A$ commutes with D. Thus A commutes with B.

References

[1] M. A. Naimark: On a representation of additive operator set functions. Dokl. Akad. Nauk SSSR, 41, 359-361 (1943).
[2] P. R. Halmos: Lectures on Boolean Algebra. New York (1963).
[3] B. Sz.-Nagy: Extensions of linear transformations in Hilbert space which extend beyond this space; Appendix to "Functional Analysis" by F. Riesz and B. Sz.-Nagy, New York (1960).

