150. On Indefinite (E. R.)-Integrals. II

By Kumiko Fujita

(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1965)
§3. Now, let us prove the following main theorem.
Theorem. If $f(x)$ is \mathscr{D}-integrable in $I_{0}=[a, b]$, there exists a measure ν such that $f(x)$ has a indefinite (E.R. ν)-integral, (E.R. ν) $\int_{a}^{x} f(t) d t$, and (E.R. $\left.\nu\right) \int_{a}^{x} f(t) d t=(\mathscr{D}) \int_{a}^{x} f(t) d t$ for all $x \in I_{0}$.

Proof. We may clearly assume that $f(x)=0$ for all $x \in C\left(I_{0}\right)$. If the function $f(x)$ is summable on I_{0}, we have (E.R. ע) $\int_{a}^{x} f(t) d t=$ $\int_{a}^{x} f(t) d t=(\mathscr{D}) \int_{a}^{x} f(t) d t$ for every measure ν which fulfils condition $\left.1^{*}\right)$ and 2*) [1].

Next, we shall consider the case in which $f(x)$ is not summable. Let $f(x)$ be a function which is \mathscr{D}-integrable but not summable on I_{0}. Then, there exists, by the lemma, a non-decreasing sequence of closed sets $\left\{F_{l}\right\}$ such that (i) $\bigcup_{l=1}^{\infty} F_{l}=I_{0}$, (ii) $f(x)$ is summable on F_{l},
(iii) $\left|F(I)-\int_{F_{l} \cap I} f(x) d x\right| \leq 2^{-l}$ for every interval $I \subset I_{0}$,
(iv) $\sum_{j=1}^{\infty}\left|F\left(J_{l}^{j}\right)\right| \leq 2^{-l}$
for the sequence of intervals $\left\{J_{l}^{j}\right\}$ contiguous to the closed set which consists of all points of F_{n} and end points of I_{0}.

Since $f(x)$ is by hypothesis, not summable, we may assume that

$$
\int_{F_{l-F_{l-1}}}|f(x)| d x \geq 2^{-l} \quad l=1,2,3 \ldots
$$

$$
\begin{equation*}
\text { (we regard } F_{0} \text { as empty). } \tag{3}
\end{equation*}
$$

On account of this and summability of $f(x)$ on F_{l}, we find, for every l, a measurable set $H_{l} \subset F_{l}$ such that $f(x) \geq f\left(x^{\prime}\right)$ for every $x \in H_{l}$ and $x^{\prime} \in F_{l}-H_{l}$, and

$$
\begin{equation*}
\int_{H_{l}}|f(x)| d x=2^{-l} \tag{4}
\end{equation*}
$$

Writing $\delta_{l}=\operatorname{mes} H_{l}$, we see at once that

$$
\begin{align*}
& \operatorname{mes}\left(F_{l}-F_{l-1}\right)>\delta_{l}, \tag{5}\\
& \delta_{l}>\delta_{l+1}, \tag{6}\\
& \operatorname{mes}(E)<\delta_{l} \text { implies } \int_{E}|f(x)| d x \leq 2^{-l} \tag{7}
\end{align*}
$$

for every measurable set $E \subset F_{l}$.
Let h_{l} and k_{l} be integers such that

$$
\begin{gather*}
\left(h_{l}-1\right) \delta_{l}<\operatorname{mes}\left(F_{l}-F_{l}-1\right)<h_{l} \delta_{l}, \tag{8}\\
2^{k_{l}{ }^{-1}} \delta_{l+1}<\delta_{l}<2^{k} \delta_{l+1} . \tag{9}
\end{gather*}
$$

Then, h_{l} and k_{l} are uniquely determined and we have, by (5) and (6), $h_{l} \geq 2$ and $k_{l} \geq 1$. Hence there exists, for each n, a integer $l(n)$ such that $\sum_{l=1}^{l(n)-1}\left(h_{l}+k_{l}\right)<n \leq \sum_{l=1}^{l(n)}\left(h_{l}+k_{l}\right)$. Writing $m(n)=n-\sum_{l=1}^{l(n)-1}\left(h_{l}+k_{l}\right)$, we have

$$
\begin{equation*}
n=\sum_{l=1}^{l(n)-1}\left(h_{l}+k_{l}\right)+m(n), 1 \leq m(n) \leq h_{l(n)}+k_{l(n)} . \tag{10}
\end{equation*}
$$

Let $a=a_{l}^{0}<\cdots<a_{l}^{m}<a_{l}^{m+1}<\cdots<a_{l}^{h_{l}+k_{l}}=b$ be a sequence such that

$$
\operatorname{mes}\left(F_{l}-F_{l-1}\right), a_{l}^{\operatorname{mes}\left(F_{l}-F_{l-1}\right) / h_{l} \text { when } 1 \leq m \leq h_{l}-1} \begin{gather*}
\operatorname{mes}\left(F_{l}-F_{l-1}\right) / h_{l} \cdot 2^{\left(m-h_{l}+1\right)} \tag{11}\\
\text { when } h_{l}<m \leq h_{l}+k_{l}-1 \\
\operatorname{mes}\left(F_{l}-F_{l-1}\right) / h_{l} \cdot 2^{-k_{l}} \\
\text { when } m=h_{l}+k_{l} .
\end{gather*}
$$

Writing $E_{0}=(-\infty, a) \cup(b,+\infty), E_{n}=\left\{F_{l(n)}-F_{l(n)-1}\right\} \cap\left(a^{m(n)-1}, a^{l(n)}\right]$ for $n \geq 1$, we have $E_{n} \cap E_{n^{\prime}}=\phi$ for $n \neq n^{\prime}$ and $\bigcup_{n=1}^{\infty} E_{n}=\bigcup_{l=1}^{\infty}\left(F_{l}-F_{l-1}\right)-\{a\}=$ $I_{0}-\{a\}$. Hence, if we define a measure ν by the relation $\nu(E)=$ $\sum_{n=0}^{\infty} 2^{-n}$ mes $\left(E \cap E_{n}\right)$ for every measurable set $E, \nu(E)$ is a measure which fulfills the conditions 1^{*}) and 2^{*}).

Now we shall show that the sequence $V\left(\varepsilon_{n}, A_{n}: f_{n}\right)$ which defined by the relations that

$$
\begin{aligned}
\varepsilon_{n} & =\left(\left|I_{0}\right|+1\right) 2^{-l(n)} \\
A_{n} & =\bigcup_{i=1}^{n} E_{i} \cup(-\infty, a] \cup(b, \infty) \\
f_{n} & =\left\{\begin{array}{cc}
f(x) & \text { for } x \in A_{n} \\
0 & \text { for } x \in C\left(A_{n}\right)
\end{array}\right.
\end{aligned}
$$

is canchy sequence converge to $f(x)$.
It is easily seen that $\varepsilon_{n} \downarrow 0$ and that A_{n} is a non-decreasing sequence of closed sets such that $\bigcup_{n=1}^{\infty} A_{n}=(-\infty, \infty)$. It follows that $V\left(\varepsilon_{n}, A_{n} ; f_{n}\right) \supset\left(\varepsilon_{n+1}, A_{n+1} ; f_{n+1}\right)$ and $f(x) \in V\left(\varepsilon_{n}, A_{n}: f_{n}\right)$ for every n. On account of (11), (8), and (6), we have

$$
\begin{aligned}
\nu\left(A_{n}^{c}\right)=\sum_{i=n+1}^{\infty} \nu\left(E_{i}\right) & =\sum_{i=n+1}^{\infty} 2^{-i} \operatorname{mes}\left(E_{i}\right) \leq \sum_{i=n+1}^{\infty} 2^{-i} \delta_{l(n)} \\
& =2^{-n} \delta_{l(n)}<\varepsilon_{n} \quad \text { for every } n .
\end{aligned}
$$

Since $\nu(B) \geq 2^{-n}$ mes (B) for every $B \subset A_{n}, \quad \nu(B) \leq \nu\left(C\left(A_{n}\right)\right)$ implies mes $\left(B \cap A_{n}\right) \leq 2^{n} \nu(B) \leq 2^{n} \cdot 2^{-n} \cdot \delta_{i(n)}=\delta_{l(n)}$. Hence, by (7), we have, for every measurable set B

$$
\begin{aligned}
\nu(B) \leq \nu\left(C\left(A_{n}\right)\right) \text { implies } & \int_{B}|f(x)| d x \\
= & \int_{B \cap A_{n}}|f(x)| d x \leq 2^{-l(n)}<\varepsilon_{n}
\end{aligned}
$$

It is easily seen that $\nu\left(E_{n+1}\right) \geq \frac{1}{4} \nu\left(E_{n}\right)$. It follows that $\nu\left(C\left(A_{n+1}\right) \geq\right.$ $\nu\left(E_{n+2}\right) \geq \frac{1}{4} \nu\left(E_{n+1}\right)$. Hence, we have, for every n,

$$
\begin{aligned}
\nu\left(c\left(A_{n}\right)\right)=\nu\left(c\left(A_{n+1}\right)\right) & +\nu\left(E_{n+1}\right) \leq \nu\left(c\left(A_{n+1}\right)\right) \\
& +4 \nu\left(c\left(A_{n+1}\right)\right)=5 \nu\left(c\left(A_{n+1}\right)\right) .
\end{aligned}
$$

Finally, we shall show that $\int_{I} f_{n}(x) d x$ tend to $F(I)$ for every interval $I \subset I_{0}$. Let $I=\left[x_{1}, x_{2}\right]$ be a interval contained in I_{0} and let $l=l(n)$, $m=m(n)$. Then, writing $I_{1}=I \cap\left[a, a_{m}^{n}\right], I_{2}=I \cap\left[a_{m}^{n}, b\right]$, we have $A_{n} \cap I=\left(F_{l} \cap I_{1}\right) \cup\left(F_{l-1} \cap I_{2}\right)$. Hence we have, by (1),

$$
\begin{aligned}
& \left|F(I)-\int_{I} f_{n}(x) d x\right| \leq\left|F\left(I_{l}\right)-\int_{I_{1} \cap F_{l}} f(x) d x\right| \\
& \quad+\left|F\left(I_{2}\right)-\int_{I_{2} \cap F_{l-1}} f(x) d x\right| \leq 2^{-l}+2^{-(l-1)}=3 \cdot 2^{-l} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} l(n)=0, \int_{I} f_{n}(x) d x$ tend to $F(I)$ for every interval $I \subset I_{0}$. This complete the proof.

Corollary. If $f_{n}(x)$ is \mathscr{D}-integrable on $I_{0}=[a, b]$, there exists a measure ν and a cauchy sequence $V\left(\varepsilon_{n}, A_{n} ; f_{n}\right) \in \mathscr{C}(f ; \nu)$ such that (i) A_{n} is a non-decreasing sequence of closed sets such that $\bigcup_{n=1}^{\infty} A_{n}=$ $(-\infty, \infty)$, (ii) $\sum_{i=1}^{\infty}\left|\int_{I_{n_{1}}^{j}} f_{n_{2}}(x) d x\right| \leq \varepsilon_{n_{1}}$ for every n_{2} and n_{1}, where $\left\{I_{n_{1}}^{i}\right\}$ is the sequence of intervals contiguous to $A_{n_{1}}$,

$$
\begin{equation*}
\left|(\mathscr{D}) \int_{I} f(x) d x-\int_{I} f_{n}(x) d x\right|<\varepsilon_{n} \tag{iii}
\end{equation*}
$$

for every interval $I \subset I_{0}$.
Proof. Taking $\varepsilon_{n}=\left(28+\left|I_{0}\right|\right) \cdot 2^{-l(n)}$ and taking $A_{n}, f_{n}, l(n)$, $m(n), F_{l}$ etc. as in the previous theorem, we need only prove that $V\left(\varepsilon_{n}, A_{n}: f_{n}\right)$ fulfills second condition. On account of (1), we have, for every interval J contained in some J_{l}^{j},

$$
\begin{equation*}
|F(J)| \leq 2^{-l} . \tag{12}
\end{equation*}
$$

It follows at once that,

$$
\begin{equation*}
\left|\int_{F_{l^{\prime} \cap J}} f(x) d x\right|<2^{-l+1} \tag{13}
\end{equation*}
$$

for every interval J contained in some J_{l}^{\prime} and for every l and l^{\prime}.
For every $l^{\prime} \geq l$, being
we have

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|\int_{J_{l}^{3} \cap F_{l^{\prime}}^{\prime}} f(x) d x\right| \leq 2^{-l+1} \tag{14}
\end{equation*}
$$

Now, let $n_{2} \geq n_{1}, l_{k}=l\left(n_{k}\right), m=m\left(n_{k}\right), a=a_{l_{k}}^{m_{k}}(k=1,2)$ and let $c_{k}\left[d_{k}\right]$ be the nearest point of $A_{n} \cap\left[a, a_{k}\right]\left[A \cap\left[a_{k}, b\right]\right]$ to a_{k} respectively
$(k=1,2)$. Then $\left(c_{1}, d_{1}\right)$ and (c_{2}, d_{2}) are contained in some $J_{l_{1}-1}^{j_{1}}$ and $J_{l_{2}-1}^{j_{2}}$ respectively. Hence we have, by (13) and (14),

$$
\begin{aligned}
& \sum_{i=1}^{\infty}\left|\int_{I_{n_{1}}^{i}} f_{n_{2}}(x) d x\right| \leq \sum_{\left\{:: I_{n_{1}}^{i} \subset\left[a, c_{2}\right]\right]}\left|\int_{I_{n_{1}}^{i} \subset F_{l_{2}}} f(x) d x\right| \\
& \quad+\sum_{\left\{:: I_{n_{1}}^{i} \subset\left[d_{2}, b\right]\right\}}\left|\int_{I_{n_{1}}^{i} \cap F_{l_{2}-1}} f(x) d x\right|+\left|\int_{\left[c_{2}, a_{2}\right] \cap F_{l_{2}}} f(x) d x\right| \\
& \quad+\left|\int_{\left[a_{2}, d_{2}\right] \cap F_{l_{2}-1}} f(x) d x\right| \leq \sum_{\left\{j: J_{l_{1}}^{j} \subset\left[a, c_{1}\right]\right]}\left|\int_{J_{l_{1} \cap F_{l_{2}}}^{i} \cap} f(x) d x\right| \\
& \quad+\sum_{\left\{j: J_{l_{1}-1}^{j} \subset\left[d_{1}, b\right]\right\}}\left|\int_{J_{l_{1}-1}^{j} \cap F_{l_{2}}} f(x) d x\right|+\left|\int_{\left[c_{1}, d_{1}\right] \cap F_{l_{2}}} f(x) d x\right| \\
& \quad+\sum_{\left\{j: J_{l_{1}}^{j} \subset\left[a, c_{1}\right]\right\}}\left|\int_{J_{l_{1}}^{j} \cap F_{l_{2}-1}} f(x) d x+\sum_{\left\{j: J_{l_{1}-1}^{j} \subset\left[c_{1}, b\right]\right\}}\right| \int_{J_{l_{1}-1}^{j} \cap F_{l_{2}-1}} f(x) d x \mid \\
& \quad+\left|\int_{\left[c_{1}, d_{1}\right] \cap F_{l_{2}-1}} f(x) d x\right|+\left|\int_{\left[c_{2}, a_{2}\right] \cap F_{l_{2}}} f(x) d x\right| \\
& \quad+\left|\int_{\left[a_{2}, d_{2}\right] \cap F_{l_{2}-1}} f(x) d x\right| \leq 28 \cdot 2^{-l_{1} \leq \varepsilon_{n_{1}}}
\end{aligned}
$$

for every $n_{2}>n_{1}$. When $n_{2} \leq n_{1}$,

$$
\sum_{i=1}^{\infty}\left|\int_{I_{n_{1}}^{i}} f_{n_{2}}(x) d x\right| \leq \int_{c\left(\Lambda_{n_{1}}\right)}\left|f_{n_{2}}(x)\right| d x=0
$$

This complete the proof.
Example. We shall consider a function which has A-integral and \mathscr{D}-integral on I_{0} but $(A) \int_{I_{0}} f(x) d x \neq(\mathscr{D}) \int_{I_{0}} f(x) d x$. And we shall construct a measure ν such that (E.R. $\nu) \int_{I} f(x) d x=(\mathscr{D}) \int_{I} f(x) d x$ for every interval $I \subset I_{0}$.

Let

$$
f(x)= \begin{cases}2^{4 n-3} / 4 n-3 & \text { for } x \in\left[2^{-4 n+3}+2^{-2 n+2}, 2^{-4 n+5}+2^{-2 n+2}\right) \\ 2^{4 n-1} / 4 n-1 & \text { for } x \in\left[2^{-4 n+1}+2^{-2 n+2}, 2^{-4 n+3}+2^{-2 n+2}\right) \\ -2^{2 n} / 2 n & \text { for } x \in\left[2^{-4 n+1}+2^{-2 n}, 2^{-4 n+1}+2^{-2 n+2}\right) \\ 0 & \text { for } x \in(-\infty, 0] \cup[3,+\infty) .\end{cases}
$$

Then it is easily seen that
$(\mathscr{D}) \int_{0}^{3} f(x) d x=\frac{9}{2} \log 2$
(A) $\int_{0}^{3} f(x) d x=3 \log 2$.

Next we shall consider (E.R. ν) integral. Let $\left\{F_{l}\right\}$ be the nondecreasing sequence of slosed sets such that $F_{l}=(-\infty, 0) \cup\left[2^{-4 l+1}+2^{-2 l}\right.$, $+\infty)$. Then, applying the same method as in the theorem, we have a sequence $0=a_{l}^{h_{l}+k_{l}}<\cdots<a_{l}^{m+1}<a_{l}^{m}<\cdots<a_{l}^{1}<2^{-4 l+5}+2^{-2 l+2}$ for every l, and we have $A_{n}=(-\infty, 0] \cup\left[\max \left(2^{-4 l}+2^{-2 l}, a_{l}^{m}\right),+\infty\right)$ for every n, $l=l(n)$ and $m=m(n)$. It follows at once that

$$
\lim _{n \rightarrow \infty} \int_{0}^{3} f_{n}(x) d x=\lim _{n \rightarrow \infty} \int_{A_{n}} f(x) d x=\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{3} f(x) d x=(\mathscr{D}) \int_{0}^{3} f(x) d x
$$

Reference

[1] H. Okano: Sur une généralisation de l'intégrale et un théorème général de l'intégration par parties.

