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0. INTRODUCTION. R. Cignoli has proved the following result:
0.1. THEOREM: Let A be a Kleene algebra. It is possible to
define on A a structure of Lukasiewicz algebra if and only if the
family B of all Boolean elements of A has the following properties:

B1) B is separating.
B2) B is lower relatively complete.

The purpose of this note is to show that if, instead of a Kleene
algebra, A is a distributive lattice with first (0) and last element
(1), then we can define on A a structure of Lukasiewicz algebra if
and only if the family B has the properties B 1), B2), and

B3) B is upper relatively complete.

We shall use the notations and definitions of [1].

In §1 we introduce an alternative definition of Lukasiewicz
algebra which is useful for the purpose of this paper.

1. DEFINITION OF LUKASIEWICZ ALGEBRAS. We can define
the notion of (three-valued) Lukasiewicz algebra introduced and de-
veloped by Gr. Moisil [3], [4], [5] in the following way [6], [7]:
1.1. DEFINITION: A (three-valued) Lukasiewicz algebra is a system
4,1, A, V, ~, V) where (4,1, A\, V, ~) 18 a de Morgan lattice
and V is a unary operator defined on A satisfying the following
axioms:

Ll) ~axzVvFx=1, L2) xA~x=~xAVu,
L3) FAy)=VzAry.

In [6] (Theorem 4.3) it was proved that in a (three-valued)

Lukasiewicz algebra the operation ~ also satisfies the condition

K) TN ~TZYV ~Y,
that is, the system (4, 1, A, VV, ~) is not only a de Morgan algebra
but a Kleene algebra.

A. Monterio has proved that if we postulate the condition K),
then we can replace axiom L 8) of definition 1.1 by the weaker

L'3) VeAy)<FzAVy.

More exactly:

1.2. THEOREM: Let (A,1, A\, V, ~,V) be a system such that
4,1, A, V,~) is a Kleene algebra and V is a unary operator
defined on A satisfying axioms L 1), L 2), and L'3). Then (4,1, A,
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V, ~, V) is a (three-valued) Lukasiewicz algebra.
ProoF: As Kleene algebras are special kind of de Morgan alge-
bras, to prove the theorem we need show that
(1) e AVy<F(xAy).
We will prove (1) in the following steps:
a) x<rua.
By L1) we have
eNA(~z\VFPr)=xAl=xz,
then
@A ~2)V(@AVz)=2
and, recalling L 2), we can write:
(~axAVx)V (e AV x)=1.
Therefore
e=(~axVe)A\Vele.
b) If ~xAz<wx, then z</x.
Suppose that ~xAz<wx, we have

(~xA)\VFeLae\/ TP
and then, by a), we can write:
(~axVPe)<@NVFIe) <l
and recalling L 1)
2\Vlra<le,
therefore
<,

e) ~xAVeAVy<u.
Using L 2) we can write:
~EAVENVYy=~ax N A\Vy<a.
d) ~aAFzAPy<y.
By L 2), K), and a) we have
~EAVEANVYy=~2 NS ANVYS(~YyNVYAPy=(~yA\VFy)V Yy AVy)
=(~yANFyY)NVy=YA~y)Vy=y.
From c) and d) we have
e) ~xAVeAFry<xzAy.
From e), interchanging « by ¥, we have
) ~ynNVeAVTy<eAy.
From e) and f), taking acount of M 2) it follows that
g) ~@AYANFeATy<azAy.
Finally, from b) and g) we have (2).
2. CHARACTERISTIC PROPERTIES OF BOOLEAN KELEMENTS
OF LUKASIEWICZ ALGEBRAS. Let (4,0,1, A, V) be a distributive
lattice with first and last element. If x€ A has a Boolean comple-
ment, we shall denote it by —x. It is convenient to recall the
following property:
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2.1. If z is a Boolean element of A, then for all xe A
xA2=0 1is equivalent to xr<—=z.
2.2. LEMMA: Let (A,0,1, A, V) be a distributive lattice and let
B be the sublattice of all Boolean elements of A.
a) If B is lower relatively complete, then the operator V
defined on A by the formula:
Pe=N{be B:x<b}
has the following properties:
Cc1l) ro=0, C2) xz<lz, C3) F(vy)=ra\Vvry,
C4) rrex=ra. C5) If <y, then Fa<ly,
C6) Vx=x if and only if we B, CT) V(@AVy)=FzAVy.
b) If B is upper relatively complete, then the operator
4 defined on A by the formula:
de=\{beB:b<ux}
has the following properties:
I1) 41=1, I12) dz<w, I3) A(xAy)=dxAdy,
I4) ddx=Adx, I5) If x<y, then x4<4y,
I6) dx=« if and only if xe B, IT) d(x\/ dy)=4dx\ 4y.
PROOF: a) The properties C 1)-C 6) are a consequence of the
fact that B is a sublattice of A containing 0 and 1 and lower rela-
tively complete (see [1]).
Let us prove C7):
As xAPy<z, it follows from C5) that

(1) PaAry)<Px
and since x AVy<FPy, from C5) and C 4) we have
(2) V(e AVy)<Fy.

On the other hand, by C 2) we can write:
ecANVeANVyN =V (@ ANVy)=(@AVy)\ =V (@ A\Vy)
L (@AVY)N =V (@ AVy)=0.
Since FeAVyA\ —V(xAVy)e B, we have (by 2.1)
(8) R A AVE L TAVI A CYNZ )]
Meeting both sides of (3) with Vx and using C 2) and (1) we have
x=xANVx<FaN\ VYAV @xAVy)<Fx
Hence, by C5), C3), and C 6) it follows that
Pe=FaeN\—=Vy)\VV(xA\Vy)
and then, by (2)
PaANVy=V(xAVy).
It is not necessary to prove b), for it is the dual form of a).
Q.E.D.
(Compare this result with [2]).
We shall say that a sublattice B of a lattice A is relatively
complete if it is both lower and upper relatively complete.
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2.3. THEOREM: Let (A,0,1, A\, V) be a distributive lattice with
first and last element such that the sublattice B of all its
Boolean elements s relatively complete and separating. Then,
defining the operators V, 4, and ~ by the formulae:
Pe=AN{be B:x<b}, de=\V{be B:b<ax},
~x=(—dxAx)V -V,
the system (A,1, A\, V, ~,F) is a (three-valued) Lukasiewicz algebra.
Proor: We shall use all properties shown in 2.2 without refer-
ence. The theorem will be proved in the following steps:
a) V(eNy)<FzAVy.
It follows immediately from C5).
b) ~z\VFx=1.
It easily follows from the definition of ~z.
¢) aNA~r=~xAVx.
Taking account of 2.1, we have x A —Fx=0, then
eN~x=2sAN(—deAx)V —Vr)=—dxNw.
But we also have
~eANVe=((—deAx)V —FVe)AVe=—dxNx.
d) If ze B, then ~z=—=z.
By ze B, we have 4z=2z=Fz, then
~2=(—d2N\2)V —FVz=(—2A2)V —2=—2.
e) —dx=~dx and —Frx=~"Fzx.
It is an immediate consequence of d).
f) de=~V~zx.
First of all, we have —dx=F—4x, —Vx=FV —Fx, hence we can
write
V~o=F({(—deNx)V —Va)=V(—deANx)\VV —Fx
=V —deNx) —Ve=F —dxN\Vx)\V —Fx
=(—daNVx)V —Vo=—de\N —Fex=—4dx
and then f) follows from e).
g) Ve=~d~zx.
The proof of g) is analogous to that of f).
h) ~~z=uz.
By e), ), and g) we have
~~gp=(—d~a A\ ~2)V —FV~e=Fax N\ ~x)\V 4z
=VeN({(—deAx)V —Fx)Vae=(—deNx)\V dx=2.
i) «<y if and only if dx<dy and Fe<rly.
If <y, then dx<4y and Fax<ly.
Conversely, if dx<4y, then for all 2’e B we have:
2’ <wx implies 2’ <y
and if Fx<VPy, then for all ze B we have:
y<z implies ®<z,
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therefore, by the separating property of B, we must have x<y.
j) If x<y, then ~y<~z.

According to i), it is sufficient to prove that d~x<4~y and
Ve~ax<lV~y.

But by e), g), and h) we have d~y=—Fy and d~2=—"Fx,
hence, if x<y, it follows that d~y<d~x. Analogously we can
prove V~y<V~u,

k) ~@Ay)=~azV ~y.
It easily follows from h) and k).
) aA~z<yVv~y.

As we have shown in the proof of ¢), A ~x=—4dxA2z, thus
Ad(x N\ ~2x)=0 and a fortiori

(1) AN\ ~x)<AYyV ~y).

On the other hand, y\V ~y=yV(—4dyAy)V —Vy=y\ —Fy, therefore
VF(yV ~y)=1, and then we have

(2) PaeN~2)<P(yV ~vy)

and x A ~x<yV ~y follows from i), (1), and (2).
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