676 [Vol. 41,

147. Boolean Elements in Lukasiewicz Algebras. II

By Roberto CIGNOLI and Antonio MONTEIRO Instituto de Matemática Universidad Nacional del Sur, Bahía Blanca, Argentina

(Comm. by Kinjirô Kunugi, M.J.A., Oct. 12, 1965)

- 0. INTRODUCTION. R. Cignoli has proved the following result: 0.1. THEOREM: Let A be a Kleene algebra. It is possible to define on A a structure of Lukasiewicz algebra if and only if the family B of all Boolean elements of A has the following properties:
 - B1) B is separating.
 - B2) B is lower relatively complete.

The purpose of this note is to show that if, instead of a Kleene algebra, A is a distributive lattice with first (0) and last element (1), then we can define on A a structure of Lukasiewicz algebra if and only if the family B has the properties B1, B2, and

B3) B is upper relatively complete.

We shall use the notations and definitions of [1].

- In § 1 we introduce an alternative definition of Lukasiewicz algebra which is useful for the purpose of this paper.
- 1. DEFINITION OF LUKASIEWICZ ALGEBRAS. We can define the notion of (three-valued) Lukasiewicz algebra introduced and developed by Gr. Moisil [3], [4], [5] in the following way [6], [7]: 1.1. DEFINITION: A (three-valued) Lukasiewicz algebra is a system
- (A, 1, \wedge , \vee , \sim , V) where (A, 1, \wedge , \vee , \sim) is a de Morgan lattice and V is a unary operator defined on A satisfying the following axioms:

$$L 1) \sim x \vee \nabla x = 1,$$
 $L 2) x \wedge \sim x = \sim x \wedge \nabla x,$

 $L 3) \quad V(x \wedge y) = Vx \wedge Vy.$

In [6] (Theorem 4.3) it was proved that in a (three-valued) Lukasiewicz algebra the operation \sim also satisfies the condition

K) $x \wedge \sim x \leq y \vee \sim y$, that is, the system $(A, 1, \wedge, \vee, \sim)$ is not only a de Morgan algebra but a Kleene algebra.

A. Monterio has proved that if we postulate the condition K), then we can replace axiom L 3) of definition 1.1 by the weaker

$$L'3$$
) $\Gamma(x \wedge y) \leq \Gamma x \wedge \Gamma y$.

More exactly:

1.2. THEOREM: Let $(A, 1, \land, \lor, \sim, \lor)$ be a system such that $(A, 1, \land, \lor, \sim)$ is a Kleene algebra and \lor is a unary operator defined on A satisfying axioms L 1), L 2), and L'3). Then $(A, 1, \land, \lor)$

 \vee , \sim , \nearrow) is a (three-valued) Lukasiewicz algebra.

PROOF: As Kleene algebras are special kind of de Morgan algebras, to prove the theorem we need show that

We will prove (1) in the following steps:

a)
$$x \leq \nabla x$$
.

By L1) we have

$$x \wedge (\sim x \vee \nabla x) = x \wedge 1 = x$$

then

$$(x \land \sim x) \lor (x \land \nabla x) = x$$

and, recalling L2), we can write:

$$(\sim x \land \nabla x) \lor (x \land \nabla x) = x$$
.

Therefore

$$x = (\sim x \lor x) \land \nabla x \le \nabla x$$
.

b) If $\sim x \wedge z \leq x$, then $z \leq \nabla x$.

Suppose that $\sim x \land z \le x$, we have

$$(\sim x \land z) \lor \mathcal{V}x \le x \lor \mathcal{V}x$$

and then, by a), we can write:

$$(\sim x \vee \nabla x) \leq (z \vee \nabla x) \leq \nabla x$$

and recalling L1

$$z \vee \nabla x < \nabla x$$
.

therefore

$$z < \nabla x$$
.

c) $\sim x \wedge \nabla x \wedge \nabla y \leq x$.

Using L(2) we can write:

$$\sim x \land \nabla x \land \nabla y = \sim x \land x \land \nabla y \leq x$$
.

d)
$$\sim x \wedge \nabla x \wedge \nabla y \leq y$$
.

By L(2), K), and a) we have

$$\sim x \land \overline{r} x \land \overline{r} y = \sim x \land x \land \overline{r} y \le (\sim y \lor y) \land \overline{r} y = (\sim y \land \overline{r} y) \lor (y \land \overline{r} y)$$

$$= (\sim y \land \overline{r} y) \lor y = (y \land \sim y) \lor y = y.$$

From c) and d) we have

e)
$$\sim x \wedge \nabla x \wedge \nabla y \leq x \wedge y$$
.

From e), interchanging x by y, we have

f)
$$\sim y \wedge \nabla x \wedge \nabla y \leq x \wedge y$$
.

From e) and f), taking acount of M2) it follows that

g)
$$\sim (x \wedge y) \wedge \nabla x \wedge \nabla y \leq x \wedge y$$
.

Finally, from b) and g) we have (2).

2. CHARACTERISTIC PROPERTIES OF BOOLEAN ELEMENTS OF LUKASIEWICZ ALGEBRAS. Let $(A, 0, 1, \land, \lor)$ be a distributive lattice with first and last element. If $x \in A$ has a Boolean complement, we shall denote it by -x. It is convenient to recall the following property:

2.1. If z is a Boolean element of A, then for all $x \in A$

$$x \wedge z = 0$$
 is equivalent to $x \leq -z$.

- 2.2. LEMMA: Let $(A, 0, 1, \wedge, \vee)$ be a distributive lattice and let B be the sublattice of all Boolean elements of A.
- a) If B is lower relatively complete, then the operator ∇ defined on A by the formula:

$$\nabla x = \wedge \{b \in B : x \leq b\}$$

has the following properties:

- C1) V0=0, C2) $x \le Vx$, C3) $V(x \lor y) = Vx \lor Vy$,
- C4) VVx = Vx. C5) If $x \le y$, then $Vx \le Vy$,
- C 6) $\nabla x = x$ if and only if $x \in B$, C 7) $\nabla (x \wedge \nabla y) = \nabla x \wedge \nabla y$.
- b) If B is upper relatively complete, then the operator Δ defined on A by the formula:

$$\Delta x = \bigvee \{b \in B : b \leq x\}$$

has the following properties:

- $I1) \quad \Delta 1=1, \qquad I2) \quad \Delta x \leq x, \qquad I3) \quad \Delta (x \wedge y) = \Delta x \wedge \Delta y,$
- I4) $\Delta \Delta x = \Delta x$, I5) If $x \leq y$, then $x \Delta \leq \Delta y$,
- I6) $\Delta x = x$ if and only if $x \in B$, I7) $\Delta(x \vee \Delta y) = \Delta x \vee \Delta y$.

PROOF: a) The properties C 1)-C 6) are a consequence of the fact that B is a sublattice of A containing 0 and 1 and lower relatively complete (see [1]).

Let us prove C 7):

As $x \wedge \nabla y \leq x$, it follows from C 5) that

$$(1) V(x \wedge Vy) \leq Vx$$

and since $x \wedge Vy \leq Vy$, from C 5) and C 4) we have

On the other hand, by C2) we can write:

$$x \wedge \nabla x \wedge \nabla y \wedge -\nabla (x \wedge \nabla y) = (x \wedge \nabla y) \wedge -\nabla (x \wedge \nabla y)$$

$$\leq (x \wedge \nabla y) \wedge -\nabla (x \wedge \nabla y) = 0.$$

Since $\nabla x \wedge \nabla y \wedge - \nabla (x \wedge \nabla y) \in B$, we have (by 2.1)

$$(3) x \leq -\nabla x \vee -\nabla y \vee \nabla (x \wedge \nabla y).$$

Meeting both sides of (3) with ∇x and using C 2) and (1) we have $x = x \wedge \nabla x \leq (\nabla x \wedge -\nabla y) \wedge \nabla (x \wedge \nabla y) \leq \nabla x$

Hence, by C 5), C 3), and C 6) it follows that

$$\nabla x = (\nabla x \wedge - \nabla y) \vee \nabla (x \wedge \nabla y)$$

and then, by (2)

$$\nabla x \wedge \nabla y = \nabla (x \wedge \nabla y)$$
.

It is not necessary to prove b), for it is the dual form of a).

Q.E.D.

(Compare this result with $\lceil 2 \rceil$).

We shall say that a sublattice B of a lattice A is relatively complete if it is both lower and upper relatively complete.

2.3. THEOREM: Let $(A, 0, 1, \wedge, \vee)$ be a distributive lattice with first and last element such that the sublattice B of all its Boolean elements is relatively complete and separating. Then, defining the operators \mathcal{V} , Δ , and \sim by the formulae:

$$abla x = \land \{b \in B : x \le b\}, \qquad \Delta x = \lor \{b \in B : b \le x\}, \\
\sim x = (-\Delta x \land x) \lor - \nabla x,$$

the system $(A, 1, \wedge, \vee, \sim, V)$ is a (three-valued) Lukasiewicz algebra.

PROOF: We shall use all properties shown in 2.2 without reference. The theorem will be proved in the following steps:

- a) $V(x \wedge y) \leq V(x \wedge V(y))$.
- It follows immediately from C 5).
 - b) $\sim x \vee \nabla x = 1$.

It easily follows from the definition of $\sim x$.

c)
$$x \wedge \sim x = \sim x \wedge \mathcal{V}x$$
.

Taking account of 2.1, we have $x \wedge -rx = 0$, then

$$x \wedge \sim x = x \wedge ((-\Delta x \wedge x) \vee -\nabla x) = -\Delta x \wedge x.$$

But we also have

$$\sim x \wedge \nabla x = ((-\Delta x \wedge x) \vee -\nabla x) \wedge \nabla x = -\Delta x \wedge x.$$

d) If $z \in B$, then $\sim z = -z$.

By $z \in B$, we have $\Delta z = z = \nabla z$, then

$$\sim z = (-\Delta z \wedge z) \vee - \nabla z = (-z \wedge z) \vee -z = -z$$
.

e)
$$-\Delta x = \sim \Delta x$$
 and $-\nabla x = \sim \nabla x$.

It is an immediate consequence of d).

f)
$$\Delta x = \sim \mathcal{V} \sim x$$
.

First of all, we have $-\Delta x = \mathcal{V} - \Delta x$, $-\mathcal{V} x = \mathcal{V} - \mathcal{V} x$, hence we can write

and then f) follows from e).

g) $\nabla x = \sim \Delta \sim x$.

The proof of g) is analogous to that of f).

h)
$$\sim \sim x = x$$
.

By e), f), and g) we have

$$\sim \sim x = (-\Delta \sim x \land \sim x) \lor -\overline{\lor} \sim x = (\overline{\lor} x \land \sim x) \lor \Delta x$$
$$= (\overline{\lor} x \land ((-\Delta x \land x) \lor -\overline{\lor} x))) \lor \Delta x = (-\Delta x \land x) \lor \Delta x = x.$$

i) $x \le y$ if and only if $\Delta x \le \Delta y$ and $\nabla x \le \nabla y$.

If $x \le y$, then $\Delta x \le \Delta y$ and $\nabla x \le \nabla y$.

Conversely, if $\Delta x \leq \Delta y$, then for all $z' \in B$ we have:

$$z' \le x$$
 implies $z' \le y$

and if $\nabla x \leq \nabla y$, then for all $z \in B$ we have:

$$y \le z$$
 implies $x \le z$,

therefore, by the separating property of B, we must have $x \leq y$.

j) If $x \le y$, then $\sim y \le \sim x$.

According to i), it is sufficient to prove that $\triangle x \le \triangle y$ and $\nabla x \le \nabla y$.

But by e), g), and h) we have $\triangle \sim y = -Vy$ and $\triangle \sim x = -Vx$, hence, if $x \le y$, it follows that $\triangle \sim y \le \triangle \sim x$. Analogously we can prove $V \sim y \le V \sim x$.

k)
$$\sim (x \wedge y) = \sim x \vee \sim y$$
.

It easily follows from h) and k).

1) $x \wedge \sim x \leq y \vee \sim y$.

As we have shown in the proof of c), $x \wedge \sim x = -\Delta x \wedge x$, thus $\Delta(x \wedge \sim x) = 0$ and a fortiori

$$\Delta(x \wedge \sim x) \leq \Delta(y \vee \sim y).$$

On the other hand, $y \lor \sim y = y \lor (-\Delta y \land y) \lor -\nabla y = y \lor -\nabla y$, therefore $\nabla (y \lor \sim y) = 1$, and then we have

and $x \wedge \sim x \leq y \vee \sim y$ follows from i), (1), and (2).

References

- [1] Cignoli, R.: Boolean elements in Lukasiewicz algebras. I. Proc. Japan Acad., 41, 670-675 (1965).
- [2] Halmos, P.: Algebraic logic I. Monadic Boolean algebras. Comp. Math., 12, 217-249 (1955).
- [3] Moisil, Gr.: Recherches sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy, 26, 431-436 (1940).
- [4] —: Notes sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy, 27, 86-98 (1941).
- [5] —: Sur les ideaux des algèbres Lukasiewicziennes trivalentes. Analele Universitatti C. I. Parhon. Seria Acta Logica, 3, 83-95 (1960).
- [6] Monteiro, A.: Sur la definition des algèbres de Lukasiewicz trivalentes. To appear in Bull. Soc. Sc. Math. R. P. Roumaine.
- [7] Monteiro, L.: Axiomes indépendants pour les algèbres de Lukasiewicz trivalentes. To appear in Bull. Soc. Sc. Math. R. P. Roumaine.