84. Some Applications of the Functional Representations of Normal Operators in Hilbert Spaces. XX

By Sakuji Inoue

Faculty of Education, Kumamoto University
(Comm. by Kinjirô Kunugi, m.J.A., April 12, 1966)
Let $T(\lambda)$ be the same notation as that used in the preceding paper; that is, let $T(\lambda)$ be a function with singularities $\overline{\left\{\lambda_{\nu}\right\}} \cup\left[\bigcup_{j=1}^{n} D_{j}\right]$ such that the denumerably infinite set $\left\{\lambda_{\nu}\right\}$ denoting the set of poles of $T(\lambda)$ in the sense of the functional analysis is everywhere dense on a closed or an open rectifiable Jordan curve and that the mutually disjoint closed (connected) domains $D_{j}(j=1$ to $n)$ have no point in common with the closure $\left\{\overline{\left.\lambda_{\nu}\right\}}\right.$ of $\left\{\lambda_{\nu}\right\}$ and lie in the disc $|\lambda| \leqq \sup \left|\lambda_{\nu}\right|$.

Theorem 56. Let the ordinary part of such a function ${ }^{\nu}(\lambda)$ as was stated above be a non-zero constant ξ; let c be an arbitrary finite complex number; let $\sigma=\sup \left|\lambda_{\nu}\right| ;$ let $n(\rho, c)$ be the number of c-points, with due count of multiplicity, of $T(\lambda)$ in the closed domain $\bar{\Delta}_{\rho}\{\lambda: \rho \leqq|\lambda| \leqq+\infty\}$ with $\sigma<\rho<+\infty$; let

$$
\begin{aligned}
& N(\rho, c)=\int_{\rho}^{+\infty} \frac{n(r, c)-n(\infty, c)}{r} d r-n(\infty, c) \log \rho(\sigma<\rho<+\infty), \\
& m(\rho, \infty)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|T\left(\rho e^{-i t}\right)\right| d t(\sigma<\rho<+\infty)
\end{aligned}
$$

and let $M(\rho)=\max _{t \in[0,2 \pi]}\left|T\left(\rho e^{-i t}\right)\right|$. Then $\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, s e^{i \theta}\right) d \theta$ is a decreasing function of s in the interval $|\xi|<s<M(\rho)$ for every ρ with $\sigma<\rho<+\infty$ and $m(\rho, \infty)$ is a decreasing convex function of $\log \rho$ for the interval $\sigma<\rho<+\infty$; moreover the equality

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, s e^{i \theta}\right) d \theta=0
$$

holds for every ρ with $\sigma<\rho<+\infty$ and every s with $M(\rho) \leqq s<+\infty$ and the equation $T(\lambda)-s e^{i \theta}=0$ has no root in the domain $\{\lambda: \rho<|\lambda|<+\infty\}$ for every $\theta \in[0,2 \pi]$ and every s with $M(\rho) \leqq s<+\infty$.

Proof. Consider the function $f(\lambda)$ defined by

$$
f(\lambda)=\left\{\begin{array}{l}
T\left(\frac{1}{\lambda}\right)=\xi+\sum_{\mu=1}^{\infty} C_{-\mu} \lambda^{\mu} \quad(\lambda \neq 0) \quad\left(0 \leqq|\lambda| \leqq \frac{1}{\rho}, \sigma<\rho<+\infty\right), \\
\xi \quad(\lambda=0)
\end{array}\right.
$$

where, as already shown before,

$$
C_{-\mu}=\frac{1}{2 \pi i} \int_{|\lambda|=\rho^{\prime}} \frac{T(\lambda)}{\lambda^{-\mu+1}} d \lambda \quad\left(\sigma<\rho^{\prime}<+\infty\right)
$$

Then $f(\lambda)$ is regular in the closed domain $\bar{D}_{\rho-1}\left\{\lambda: 0 \leqq|\lambda| \leqq \frac{1}{\rho}\right\}$ with $\sigma<\rho<+\infty$. We next denote by $\tilde{n}(r, c)$ the number of c-points, with due count of multiplicity, of $f(\lambda)$ in the closed domain $\bar{D}_{r}\{\lambda: 0 \leqq|\lambda| \leqq$ $r\}$ with $0 \leqq r \leqq \frac{1}{\rho}$ and set

$$
\tilde{N}\left(\frac{1}{\rho}, c\right)=\int_{0}^{\frac{1}{\rho}} \frac{\tilde{n}(r, c)-\tilde{n}(0, c)}{r} d r+\widetilde{n}(0, c) \log \frac{1}{\rho} .
$$

If we now consider the function $g(\lambda)=a-\lambda$ for a non-zero complex constant a, then we find with the aid of Jensen's theorem that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|a-s e^{i \theta}\right| d \theta=\left\{\begin{array}{l}
\log |a| \quad(|a| \geqq s) \\
\log |a|-\log \frac{|a|}{s} \quad(|a|<s) .
\end{array}\right.
$$

Hence we have for every positive s

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|a-s e^{i \theta}\right| d \theta=\stackrel{+}{\log } \frac{|a|}{s}+\log s \tag{40}
\end{equation*}
$$

On the other hand,
$\log \left|f(0)-s e^{i \theta}\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(\frac{1}{\rho} e^{i t}\right)-s e^{i \theta}\right| d t-\tilde{N}\left(\frac{1}{\rho}, s e^{i \theta}\right)\left(s e^{i \theta} \neq \xi\right)$.
Here we integrate both sides with respect to θ and change the order of integration in the resulting double integral on the right-hand side. If, for any finite complex value c, all the c-points (repeated according to the respective orders) of $f(\lambda)$ in the domain $\left\{\lambda: 0<|\lambda| \leqq \frac{1}{\rho}\right\}$ are denoted by $a_{1}^{(c)}, a_{2}^{(c)}, \cdots, a_{\tilde{n}\left(\frac{1}{\rho}, c\right)-\tilde{n}(0, c)}^{(c)}$, we have

$$
\begin{aligned}
\tilde{N}\left(\frac{1}{\rho}, c\right) & =\log \frac{\left.\rho^{-\tilde{n}\left(\frac{1}{\rho}, c\right.}\right)_{+\tilde{n}(0, c)}}{\left|a_{1}^{(c)} a_{2}^{(c)} \cdots a_{\tilde{n}\left(\frac{1}{\rho}, c\right)-\tilde{n}(0, c)}^{(c)}\right|}+\tilde{n}(0, c) \log \frac{1}{\rho} \quad(\sigma<\rho<+\infty) \\
& =\log \frac{\left|\frac{1}{a_{1}^{(c)}} \frac{1}{a_{2}^{(c)}} \cdots \frac{1}{a_{n(\rho, c)-n(\infty, c)}^{(c)}}\right|}{\rho^{n(\rho, c)-n(\infty, c)}}-n(\infty, c) \log \rho \\
& =N(\rho, c) .
\end{aligned}
$$

Accordingly the application of (40) to the result of the abovementioned procedure enables us to attain to the equality

$$
\log ^{+} \frac{|\xi|}{s}+\log s=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\left|T\left(\rho e^{-i t}\right)\right|}{s} d t+\log s-\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, s e^{i \theta}\right) d \theta
$$

so that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, s e^{i \theta}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\left|T\left(\rho e^{-i t}\right)\right|}{s} d t-\log ^{+} \frac{|\xi|}{s} \tag{41}
\end{equation*}
$$

$$
(\sigma<\rho<+\infty)
$$

Since, as will be seen from the principle of maximum modulus
for $f(\lambda),|\xi|<M(\rho)$, (41) implies that $\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, s e^{i \theta}\right) d \theta(\sigma<\rho<+\infty)$ is a decreasing function of s in the interval $|\xi|<s<M(\rho)$ as we wished to prove. Since, however, $\widetilde{n}\left(0, s e^{i \theta}\right)=n\left(\infty, s e^{i \theta}\right)=0$ for $s e^{i \theta} \neq \xi$, it is clear that $N\left(\rho, s e^{i \theta}\right) \geqq 0$ for every ρ with $\sigma<\rho<+\infty$ and every finite $s e^{i \theta}$ different from ξ and hence the right-hand side of (41) is never negative for every pair of such ρ and $s e^{i \theta}$. In particular, we obtain the desired equality $\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, s e^{i \theta}\right) d \theta=0$ valid for every ρ with $\sigma<\rho<+\infty$ and every s with $M(\rho) \leqq s<+\infty$, as we were to prove. Since $N\left(\rho, s e^{i \theta}\right) \geqq 0$ for every $\theta \in[0,2 \pi]$, the final equality implies that the equation $T(\lambda)-s e^{i \theta}=0$ has no root in the domain $D_{\rho}\{\lambda: \rho<|\lambda|<+\infty\}$ for every s with $M(\rho) \leqq s<+\infty$ and every $\theta \in[0,2 \pi]$: for otherwise there would exist uncountably many values of θ such that the inequality $\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, s e^{i \theta}\right) d \theta>0 \quad(M(\rho) \leqq s<+\infty)$ would hold, contrary to fact, as can be verified immediately from the continuity based on the regularity of $T(\lambda)$ on D_{ρ}. If we next put $s=1$ in (41), then

$$
m(\rho, \infty)=\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, e^{i \theta}\right) d \theta+\stackrel{+}{\log }|\xi| \quad(\sigma<\rho<+\infty)
$$

and so

$$
\frac{d m(\rho, \infty)}{d \log \rho}=-\frac{1}{2 \pi} \int_{0}^{2 \pi} n\left(\rho, e^{i \theta}\right) d \theta
$$

where $n\left(\rho, e^{i \theta}\right)$ is a decreasing function of ρ in the interval $\sigma<\rho<+\infty$. As a result, it is easily verified that $m(\rho, \infty)$ is a decreasing convex function of $\log \rho$ for $\sigma<\rho<+\infty$.

Theorem 57. Let the ordinary part of the function $T(\lambda)$ stated before be a polynomial $\sum_{\mu=0}^{d} e_{\mu} \lambda^{\mu}$ of degree d; let σ be the same notation as before; and let $N\left(\rho, s e^{i \theta}\right), m(\rho, \infty)$, and $M(\rho)$ be the notations associated with this $T(\lambda)$ in the same manners as those used to define $N\left(\rho, s e^{i \theta}\right), m(\rho, \infty)$, and $M(\rho)$ in Theorem 56 respectively. Then (i) $\left|e_{d}\right| \leqq M(\rho) / \rho^{d}$ for every ρ with $\sigma<\rho<+\infty$; (ii) $\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, s e^{i \theta}\right) d \theta$ is an increasing function of s in the interval $M(\rho)<s<+\infty$ for every ρ with $\sigma<\rho<+\infty$; (iii) there exists an uncountable set of values of $\theta \in[0,2 \pi]$ such that for any s greater than $\left|e_{a}\right| \rho^{d}$ with $\sigma<\rho<+\infty$ the equation $T(\lambda)-s e^{i \theta}=0$ has at least one root in the domain $D_{\rho}\{\lambda: \rho<|\lambda|<+\infty\}$; (iv) $m(\rho, \infty)$ is a convex function of $\log \rho$ for $\sigma<\rho<+\infty$.

Proof. We now consider the function

$$
\varphi\left(\lambda, s e^{i \theta}\right)= \begin{cases}(\rho \lambda)^{d}\left[T\left(\frac{1}{\lambda}\right)-s e^{i \theta}\right] \quad(\lambda \neq 0) \\ e_{d} \rho^{d} & (\lambda=0),\end{cases}
$$

where $\sigma<\rho<+\infty$ and $0 \leqq|\lambda| \leqq \frac{1}{\rho}$. Then we have

$$
\log \left|\varphi\left(0, s e^{i \theta}\right)\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\varphi\left(\frac{1}{\rho} e^{i t}, s e^{i \theta}\right)\right| d t-\hat{N}\left(\frac{1}{\rho}, 0\right),
$$

where $\hat{N}\left(\frac{1}{\rho}, 0\right)$ is the notation associated with the number of zeros, with due count of multiplicity, of $\varphi\left(\lambda, s e^{i \theta}\right)$ in the domain $\overline{\mathfrak{D}}_{\rho-1}\left\{\lambda: 0 \leqq|\lambda| \leqq \frac{1}{\rho}\right\}$ by the same method as that used to define $\tilde{N}\left(\frac{1}{\rho}, c\right)$ for the function $f(\lambda)$ stated at the beginnig of the proof of Theorem 56. Since, moreover, $\hat{N}\left(\frac{1}{\rho}, 0\right)=N\left(\rho, s e^{i \theta}\right)$,

$$
\log \left|e_{d}\right| \rho^{d}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|T\left(\rho e^{-i t}\right)-s e^{i \theta}\right| d t-N\left(\rho, s e^{i \theta}\right)
$$

By the same procedure as that used to establish (41) with the aid of (40), it is verified immediately from the final equality that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, s e^{i \theta}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\left|T\left(\rho e^{-i t}\right)\right|}{s} d t+\log \frac{s}{\left|e_{d}\right| \rho^{d}} \tag{42}
\end{equation*}
$$

$$
(\sigma<\rho<+\infty)
$$

Since $N\left(\rho, s e^{i \theta}\right) \geqq 0$, we can find by setting $s=M(\rho)$ in (42) that $\left|e_{d}\right| \rho^{d} \leqq M(\rho)$; and in addition, evidently the just established inequality and (42) imply that both (ii) and (iii) hold. If we next set $s=1$ in (42), then

$$
m(\rho, \infty)=\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(\rho, e^{i \theta}\right) d \theta+d \log \rho+\log \left|e_{d}\right| \quad(\sigma<\rho<+\infty)
$$

and hence

$$
\begin{equation*}
\frac{d m(\rho, \infty)}{d \log \rho}=-\frac{1}{2 \pi} \int_{0}^{2 \pi} n\left(\rho, e^{i \theta}\right) d \theta+d \quad(\sigma<\rho<+\infty) \tag{43}
\end{equation*}
$$

where $n\left(\rho, e^{i \theta}\right)$ denotes the number of $e^{i \theta}$-points, with due count of multiplicity, of $T(\lambda)$ in the domain $\bar{J}_{\rho}\{\lambda: \rho \leqq|\lambda| \leqq+\infty\}$. Thus (iv) is shown in the same manner as in Theorem 56.

Theorem 58. Let $T(\lambda)$ and σ be the same notations as before, and let

$$
m(\rho, c)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{1}{\left|T\left(\rho e^{-i t}\right)-c\right|} d t \quad(\sigma<\rho<+\infty, c \neq \infty)
$$

If the ordinary part of $T(\lambda)$ is a non-zero complex constant or a polynomial in λ, then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} m\left(\rho, s e^{i \theta}\right) d \theta \leqq \log \frac{2}{s} \quad(\sigma<\rho<+\infty, 0<s \leqq 1)
$$

Proof. We begin with the case where the ordinary part of $T(\lambda)$ is a non-zero complex constant ξ. Let $f(\lambda), \tilde{n}(r, c)$, and $\tilde{N}\left(\frac{1}{\rho}, c\right)$ be
the same notations as those defined at the beginning of the proof of Theorem 56. Then it is clear that $\widetilde{n}(0, c)$ is not zero if and only if $c=\xi$ and that $\tilde{N}\left(\frac{1}{\rho}, \infty\right)=0(\sigma<\rho<+\infty)$. If we now set

$$
\tilde{m}\left(\frac{1}{\rho}, c\right)=\left\{\begin{array}{l}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{1}{\left|f\left(\frac{1}{\rho} e^{i t}\right)-c\right|} d t \quad(c \neq \infty, \sigma<\rho<+\infty) \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(\frac{1}{\rho} e^{i t}\right)\right| d t \quad(c=\infty, \sigma<\rho<+\infty)
\end{array}\right.
$$

and define $\varepsilon_{j}\left(\frac{1}{\rho}, c\right)(j=1,2)$ by

$$
\tilde{m}\left(\frac{1}{\rho}, \infty\right)-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(\frac{1}{\rho} e^{i t}\right)-c\right| d t= \begin{cases}\varepsilon_{1}\left(\frac{1}{\rho}, c\right) & (c=\xi) \\ \varepsilon_{2}\left(\frac{1}{\rho}, c\right) & (c \neq \xi, \infty)\end{cases}
$$

we can find from the inequality $\log ^{+}\left|\sum_{\nu=1}^{p} \alpha_{\nu}\right| \leqq \sum_{\nu=1}^{p} \log ^{+}\left|\alpha_{\nu}\right|+\log p$ valid for any complex numbers α_{ν} that $\left|\varepsilon_{j}\left(\frac{1}{\rho}, c\right)\right| \leqq \stackrel{+}{\log }|c|+\log 2$ for $j=1,2$ and hence can analyze Nevanlinna's first fundamental theorem, as follows:

$$
\tilde{m}\left(\frac{1}{\rho}, \infty\right)=\tilde{m}\left(\frac{1}{\rho}, c\right)+\tilde{N}\left(\frac{1}{\rho}, c\right)+K(\rho, c) \quad(\sigma<\rho<+\infty)
$$

where

$$
K(\rho, c)= \begin{cases}0 & (c=\infty) \tag{44}\\ \log \left|C_{-1}\right|+\varepsilon_{1}\left(\frac{1}{\rho}, c\right) & \left(c=\xi, C_{-1} \neq 0\right) \\ \log |\xi-c|+\varepsilon_{2}\left(\frac{1}{\rho}, c\right) & (c \neq \xi, \infty)\end{cases}
$$

In fact, for the special case $c=\xi$ we can attain to the second result of (44) by considering the auxiliary function

$$
g(\lambda)=\left\{\begin{array}{l}
\frac{f(\lambda)-\xi}{\rho \lambda}=\frac{1}{\rho} \sum_{\mu=1}^{\infty} C_{-\mu} \lambda^{\mu-1} \quad\left(C_{-1} \neq 0, \lambda \neq 0\right) \\
\frac{C_{-1}}{\rho} \quad(\lambda=0),
\end{array}\right.
$$

and the other two cases are trivial. Since, on the other hand, it is obvious that $\tilde{m}\left(\frac{1}{\rho}, c\right)=m(\rho, c)$ and $\widetilde{N}\left(\frac{1}{\rho}, c\right)=N(\rho, c)$ both hold for every complex value c, finite or infinite, we obtain

$$
\begin{equation*}
m(\rho, \infty)=m(\rho, c)+N(\rho, c)+K(\rho, c) \quad(c \neq \xi, \infty ; \sigma<\rho<+\infty) \tag{45}
\end{equation*}
$$

where $K(\rho, c)=\log |\xi-c|+\varepsilon_{2}\left(\frac{1}{\rho}, c\right)$. The application of (40) and (41)
to (45) yields the relation

$$
\begin{aligned}
m(\rho, \infty) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} m\left(\rho, s e^{i \theta}\right) d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\left|T\left(\rho e^{-i t}\right)\right|}{s} d t+\log s \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} \varepsilon_{2}\left(\frac{1}{\rho}, s e^{i \theta}\right) d \theta
\end{aligned}
$$

valid for $\sigma<\rho<+\infty$; and by utilizing $\log s=\stackrel{+}{\log } s-\stackrel{+}{\log } \frac{1}{s}$ and $\left|\varepsilon_{2}\left(\frac{1}{\rho}, s e^{i \theta}\right)\right| \leqq \log ^{+} s+\log 2$ to this result, we can easily show the validity of the inequality required in the statement of the theorem.

Suppose next that the ordinary part of $T(\lambda)$ is given by $\sum_{\mu=0}^{d} e_{\mu} \lambda^{\mu}$ where $e_{d} \neq 0$. We consider the function $f(\lambda)=T\left(\frac{1}{\lambda}\right)$ or the function $\varphi(\lambda, c)$ defined at the beginning of the proof of Theorem 57, according as $c=\infty$ or $c \neq \infty$. If we set

$$
\begin{gathered}
\varepsilon\left(\frac{1}{\rho}, c\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|T\left(\rho e^{-i t}\right)\right| d t-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|T\left(\rho e^{-i t}\right)-c\right| d t \\
(c \neq \infty, \sigma<\rho<+\infty)
\end{gathered}
$$

then, by reasoning exactly like that applied before, we can verify with the help of these auxiliary functions that

$$
\begin{equation*}
m(\rho, \infty)=m(\rho, c)+N(\rho, c)+K^{\prime}(\rho, c) \tag{46}
\end{equation*}
$$

where

$$
K^{\prime}(\rho, c)=\left\{\begin{array}{l}
\log \left|e_{d}\right|+d \log \rho+\varepsilon\left(\frac{1}{\rho}, c\right) \quad(c \neq \infty) \\
d \log \rho \quad(c=\infty)
\end{array}\right.
$$

and here $\left|\varepsilon\left(\frac{1}{\rho}, c\right)\right| \leqq \stackrel{+}{\log }|c|+\log 2$. Since (46) and (42) enable us to conclude that

$$
\begin{aligned}
m(\rho, \infty) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} m\left(\rho, s e^{i \theta}\right) d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\left|T\left(\rho e^{-i t}\right)\right|}{s} d t \\
& +\log s+\frac{1}{2 \pi} \int_{0}^{2 \pi} \varepsilon\left(\frac{1}{\rho}, s e^{i \theta}\right) d \theta \quad(\sigma<\rho<+\infty)
\end{aligned}
$$

the desired inequality in the statement of the theorem is established in the same manner as before.

