84. Some Applications of the Functional Representations of Normal Operators in Hilbert Spaces. XX

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1966)

Let $T(\lambda)$ be the same notation as that used in the preceding paper; that is, let $T(\lambda)$ be a function with singularities $\overline{\{\lambda_{\nu}\}} \cup [\bigcup_{j=1}^{n} D_{j}]$ such that the denumerably infinite set $\{\lambda_{\nu}\}$ denoting the set of poles of $T(\lambda)$ in the sense of the functional analysis is everywhere dense on a closed or an open rectifiable Jordan curve and that the mutually disjoint closed (connected) domains D_{j} (j=1 to n) have no point in common with the closure $\overline{\{\lambda_{\nu}\}}$ of $\{\lambda_{\nu}\}$ and lie in the disc $|\lambda| \leq \sup |\lambda_{\nu}|$.

Theorem 56. Let the ordinary part of such a function $T(\lambda)$ as was stated above be a non-zero constant ξ ; let c be an arbitrary finite complex number; let $\sigma = \sup |\lambda_{\nu}|$; let $n(\rho, c)$ be the number of c-points, with due count of multiplicity, of $T(\lambda)$ in the closed domain $\overline{A}_{o}\{\lambda; \rho \leq |\lambda| \leq +\infty\}$ with $\sigma < \rho < +\infty$; let

$$\begin{split} N(\rho, c) &= \int_{\rho}^{+\infty} \frac{n(r, c) - n(\infty, c)}{r} dr - n(\infty, c) \log \rho \ (\sigma < \rho < +\infty), \\ m(\rho, \infty) &= \frac{1}{2\pi} \int_{0}^{2\pi} \log |T(\rho e^{-it})| dt \ (\sigma < \rho < +\infty); \end{split}$$

and let $M(\rho) = \max_{t \in [0,2\pi]} |T(\rho e^{-it})|$. Then $\frac{1}{2\pi} \int_{0}^{2\pi} N(\rho, se^{i\theta}) d\theta$ is a decreasing function of s in the interval $|\xi| < s < M(\rho)$ for every ρ with $\sigma < \rho < +\infty$ and $m(\rho, \infty)$ is a decreasing convex function of $\log \rho$ for the interval $\sigma < \rho < +\infty$; moreover the equality

$$rac{1}{2\pi}\!\int_{_0}^{_{2\pi}}\!N(
ho,\,se^{i heta})d heta\!=\!0$$

holds for every ρ with $\sigma < \rho < +\infty$ and every s with $M(\rho) \le s < +\infty$ and the equation $T(\lambda) - se^{i\theta} = 0$ has no root in the domain $\{\lambda: \rho < |\lambda| < +\infty\}$ for every $\theta \in [0, 2\pi]$ and every s with $M(\rho) \le s < +\infty$.

Proof. Consider the function $f(\lambda)$ defined by

$$f(\lambda) \!=\! egin{cases} T\Big(rac{1}{\lambda}\Big) \!=\! \xi \!+\! \sum\limits_{\mu=1}^{\infty} C_{-\mu} \lambda^{\mu} \quad (\lambda \!
eq 0) \qquad \Big(0 \!\leq\! \mid\! \lambda \mid\! \leq\! rac{1}{
ho}, \, \sigma \!<\!
ho \!<\! + \! \infty \Big), \ \xi \quad (\lambda \! =\! 0) \end{cases}$$

where, as already shown before,

$$C_{-\mu} = \frac{1}{2\pi i} \int_{|\lambda| = \rho'} \frac{T(\lambda)}{\lambda^{-\mu+1}} d\lambda \quad (\sigma < \rho' < +\infty).$$

Then $f(\lambda)$ is regular in the closed domain $\overline{\mathfrak{D}}_{\rho-1}\left\{\lambda: 0 \leq |\lambda| \leq \frac{1}{\rho}\right\}$ with $\sigma < \rho < +\infty$. We next denote by $\tilde{n}(r, c)$ the number of *c*-points, with due count of multiplicity, of $f(\lambda)$ in the closed domain $\overline{\mathfrak{D}}_r\{\lambda: 0 \leq |\lambda| \leq r\}$ with $0 \leq r \leq \frac{1}{\rho}$ and set

$$\widetilde{N}\left(\frac{1}{\rho},c\right) = \int_{0}^{\frac{1}{\rho}} \frac{\widetilde{n}(r,c) - \widetilde{n}(0,c)}{r} dr + \widetilde{n}(0,c) \log \frac{1}{\rho}.$$

If we now consider the function $g(\lambda) = a - \lambda$ for a non-zero complex constant a, then we find with the aid of Jensen's theorem that

$$\frac{1}{2\pi}\int_{0}^{2\pi}\log|a-se^{i\theta}|d\theta = \begin{cases} \log|a| & (|a| \ge s) \\ \log|a|-\log\frac{|a|}{s} & (|a| < s). \end{cases}$$

Hence we have for every positive s

(40)
$$\frac{1}{2\pi} \int_0^{2\pi} \log |a-se^{i\theta}| d\theta = \log^+ \frac{|a|}{s} + \log s.$$

On the other hand,

$$\log |f(0) - se^{i\theta}| = rac{1}{2\pi} \int_0^{2\pi} \log \left| f\left(rac{1}{
ho} e^{it}\right) - se^{i\theta} \right| dt - \widetilde{N}\left(rac{1}{
ho}, se^{i\theta}
ight) \ (se^{i heta}
eq \xi).$$

Here we integrate both sides with respect to θ and change the order of integration in the resulting double integral on the right-hand side. If, for any finite complex value c, all the c-points (repeated according to the respective orders) of $f(\lambda)$ in the domain $\left\{\lambda: 0 < |\lambda| \leq \frac{1}{\rho}\right\}$ are denoted by $a_1^{(c)}, a_2^{(c)}, \dots, a_{\tilde{n}(\frac{1}{\rho}, c) - \tilde{n}(0, c)}^{(c)}$, we have

$$egin{aligned} &\widetilde{N}igg(rac{1}{
ho},cigg) \!=\! \log rac{
ho^{-\widetilde{n}ig(rac{1}{
ho},cig)+\widetilde{n}(0,c)}}{\left|a_1^{(e)}a_2^{(e)}\cdots a_{\widetilde{n}ig(rac{1}{
ho},cig)-\widetilde{n}(0,c)}
ight|}\!+\!\widetilde{n}(0,c)\lograc{1}{
ho}\quad(\sigma\!<\!
ho\!<\!+\infty) \ &=\! \log rac{\left|rac{1}{a_1^{(e)}}rac{1}{a_2^{(e)}}\cdots rac{1}{a_{\widetilde{n}ig(
ho,c)-n(\infty,c)}}
ight|}{
ho^{n(
ho,c)-n(\infty,c)}}-\!n(\infty,c)\log
ho \ &=\! N(
ho,c). \end{aligned}$$

Accordingly the application of (40) to the result of the abovementioned procedure enables us to attain to the equality

$$\log^+ rac{|\xi|}{s} + \log s = rac{1}{2\pi} \int_0^{2\pi} \log^+ rac{|T(
ho e^{-it})|}{s} dt + \log s - rac{1}{2\pi} \int_0^{2\pi} N(
ho, se^{i heta}) d heta,$$

so that

(41)
$$\frac{1}{2\pi} \int_{0}^{2\pi} N(\rho, se^{i\theta}) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \log \frac{|T(\rho e^{-it})|}{s} dt - \log \frac{|\xi|}{s} (\sigma < \rho < +\infty).$$

Since, as will be seen from the principle of maximum modulus

for $f(\lambda)$, $|\xi| < M(\rho)$, (41) implies that $\frac{1}{2\pi} \int_{0}^{2\pi} N(\rho, se^{i\theta}) d\theta$ ($\sigma < \rho < +\infty$) is a decreasing function of s in the interval $|\xi| < s < M(\rho)$ as we wished to prove. Since, however, $\tilde{n}(0, se^{i\theta}) = n(\infty, se^{i\theta}) = 0$ for $se^{i\theta} \neq \xi$, it is clear that $N(\rho, se^{i\theta}) \ge 0$ for every ρ with $\sigma < \rho < +\infty$ and every finite $se^{i\theta}$ different from ξ and hence the right-hand side of (41) is never negative for every pair of such ρ and $se^{i\theta}$. In particular, we obtain the desired equality $\frac{1}{2\pi}\int_{0}^{2\pi}N(\rho,se^{i\theta})d\theta=0$ valid for every ρ with $\sigma < \rho < +\infty$ and every s with $M(\rho) \leq s < +\infty$, as we were to prove. Since $N(\rho, se^{i\theta}) \ge 0$ for every $\theta \in [0, 2\pi]$, the final equality implies that the equation $T(\lambda) - se^{i\theta} = 0$ has no root in the domain $D_{\rho}\{\lambda: \rho < |\lambda| < +\infty\}$ for every s with $M(\rho) \leq s < +\infty$ and every $\theta \in [0, 2\pi]$: for otherwise there would exist uncountably many values of θ such that the inequality $\frac{1}{2\pi} \int_{0}^{2\pi} N(\rho, se^{i\theta}) d\theta > 0$ $(M(\rho) \leq s < +\infty)$ would hold, contrary to fact, as can be verified immediately from the continuity based on the regularity of $T(\lambda)$ on D_{e} . If we next put s=1 in (41), then

$$m(\rho, \infty) = \frac{1}{2\pi} \int_0^{2\pi} N(\rho, e^{i\theta}) d\theta + \log |\xi| \quad (\sigma < \rho < +\infty)$$

and so

$$rac{dm(
ho,\,\infty)}{d\log
ho}\!=\!-rac{1}{2\pi}\!\int_{\scriptscriptstyle 0}^{\scriptscriptstyle 2\pi}\!n(
ho,\,e^{i heta})d heta,$$

where $n(\rho, e^{i\theta})$ is a decreasing function of ρ in the interval $\sigma < \rho < +\infty$. As a result, it is easily verified that $m(\rho, \infty)$ is a decreasing convex function of $\log \rho$ for $\sigma < \rho < +\infty$.

Theorem 57. Let the ordinary part of the function $T(\lambda)$ stated before be a polynomial $\sum_{\mu=0}^{d} e_{\mu}\lambda^{\mu}$ of degree d; let σ be the same notation as before; and let $N(\rho, se^{i\theta})$, $m(\rho, \infty)$, and $M(\rho)$ be the notations associated with this $T(\lambda)$ in the same manners as those used to define $N(\rho, se^{i\theta})$, $m(\rho, \infty)$, and $M(\rho)$ in Theorem 56 respectively. Then (i) $|e_d| \leq M(\rho)/\rho^d$ for every ρ with $\sigma < \rho < +\infty$; (ii) $\frac{1}{2\pi} \int_0^{2\pi} N(\rho, se^{i\theta}) d\theta$ is an increasing function of s in the interval $M(\rho) < s < +\infty$ for every ρ with $\sigma < \rho < +\infty$; (iii) there exists an uncountable set of values of $\theta \in [0, 2\pi]$ such that for any s greater than $|e_d|\rho^d$ with $\sigma < \rho < +\infty$ the equation $T(\lambda) - se^{i\theta} = 0$ has at least one root in the domain $D_{\rho}\{\lambda; \rho < |\lambda| < +\infty\}$; (iv) $m(\rho, \infty)$ is a convex function of $\log \rho$ for $\sigma < \rho < +\infty$.

Proof. We now consider the function

$$\varphi(\lambda, se^{i\theta}) = \begin{cases} (\rho\lambda)^d \left[T\left(\frac{1}{\lambda}\right) - se^{i\theta} \right] & (\lambda \neq 0) \\ e_d \rho^d & (\lambda = 0), \end{cases}$$

No. 4]

where $\sigma < \rho < +\infty$ and $0 \leq |\lambda| \leq \frac{1}{\rho}$. Then we have $\log |\varphi(0, se^{i\theta})| = \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| \varphi\left(\frac{1}{\rho}e^{it}, se^{i\theta}\right) \right| dt - \hat{N}\left(\frac{1}{\rho}, 0\right),$

where $\hat{N}\left(\frac{1}{\rho}, 0\right)$ is the notation associated with the number of zeros, with due count of multiplicity, of $\varphi(\lambda, se^{i\theta})$ in the domain $\overline{\mathfrak{D}}_{\rho^{-1}}\left\{\lambda: 0 \leq |\lambda| \leq \frac{1}{\rho}\right\}$ by the same method as that used to define $\tilde{N}\left(\frac{1}{\rho}, c\right)$ for the function $f(\lambda)$ stated at the beginning of the proof of Theorem 56. Since, moreover, $\hat{N}\left(\frac{1}{\rho}, 0\right) = N(\rho, se^{i\theta})$,

$$\log |e_d| \rho^d = \frac{1}{2\pi} \int_0^{2\pi} \log |T(\rho e^{-it}) - se^{i\theta}| dt - N(\rho, se^{i\theta}).$$

By the same procedure as that used to establish (41) with the aid of (40), it is verified immediately from the final equality that

$$(42) \quad \frac{1}{2\pi} \int_{0}^{2\pi} N(\rho, se^{i\theta}) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \log \frac{|T(\rho e^{-it})|}{s} dt + \log \frac{s}{|e_d| \rho^d} (\sigma < \rho < +\infty).$$

Since $N(\rho, se^{i\theta}) \ge 0$, we can find by setting $s = M(\rho)$ in (42) that $|e_d| \rho^d \le M(\rho)$; and in addition, evidently the just established inequality and (42) imply that both (ii) and (iii) hold. If we next set s=1 in (42), then

$$m(
ho,\infty)\!=\!rac{1}{2\pi}\!\int_0^{2\pi}\!\!N(
ho,\,e^{i heta})d heta\!+\!d\log
ho\!+\!\log|e_d|\quad(\sigma\!<\!
ho\!<\!+\infty)$$

and hence

(43)
$$\frac{dm(\rho,\infty)}{d\log\rho} = -\frac{1}{2\pi} \int_0^{2\pi} n(\rho, e^{i\theta}) d\theta + d \quad (\sigma < \rho < +\infty),$$

where $n(\rho, e^{i\theta})$ denotes the number of $e^{i\theta}$ -points, with due count of multiplicity, of $T(\lambda)$ in the domain $\overline{A}_{\rho}\{\lambda: \rho \leq |\lambda| \leq +\infty\}$. Thus (iv) is shown in the same manner as in Theorem 56.

Theorem 58. Let $T(\lambda)$ and σ be the same notations as before, and let

$$m(
ho, c) = rac{1}{2\pi} \int_{0}^{2\pi} \log rac{1}{\mid T(
ho e^{-it}) - c \mid} dt \quad (\sigma <
ho < + \infty, c
eq \infty).$$

If the ordinary part of $T(\lambda)$ is a non-zero complex constant or a polynomial in λ , then

$$rac{1}{2\pi}\!\int_{\scriptscriptstyle 0}^{\scriptscriptstyle 2\pi}\!m(
ho,\,se^{i heta})d heta\!\leq\!\lograc{2}{s}\quad(\sigma\!<\!
ho\!<\!+\!\infty\,,\,0\!<\!s\!\leq\!1).$$

Proof. We begin with the case where the ordinary part of $T(\lambda)$ is a non-zero complex constant ξ . Let $f(\lambda)$, $\tilde{n}(r, c)$, and $\tilde{N}\left(\frac{1}{\rho}, c\right)$ be

S. INOUE

[Vol. 42,

the same notations as those defined at the beginning of the proof of Theorem 56. Then it is clear that $\tilde{n}(0, c)$ is not zero if and only if $c = \xi$ and that $\tilde{N}(\frac{1}{c}, \infty) = 0$ ($\sigma < \rho < +\infty$). If we now set

$$\widetilde{m}\left(rac{1}{
ho},c
ight) = egin{cases} \left\{rac{1}{2\pi} \int_{0}^{2\pi} \log rac{1}{\left|f\left(rac{1}{
ho}e^{it}
ight) - c
ight|}^{dt} & (c
eq \infty, \sigma <
ho < + \infty) \ rac{1}{2\pi} \int_{0}^{2\pi} \log \left|f\left(rac{1}{
ho}e^{it}
ight)
ight| dt & (c = \infty, \sigma <
ho < + \infty) \end{cases}$$

and define $\varepsilon_{j}\!\left(rac{1}{
ho},c
ight)$ $(j\!=\!1,2)$ by

we can find from the inequality $\log \left| \sum_{\nu=1}^{p} \alpha_{\nu} \right| \leq \sum_{\nu=1}^{p} \log |\alpha_{\nu}| + \log p$ valid for any complex numbers α_{ν} that $\left| \varepsilon_{j} \left(\frac{1}{\rho}, c \right) \right| \leq \log |c| + \log 2$ for j=1, 2 and hence can analyze Nevanlinna's first fundamental theorem, as follows:

$$\widetilde{m}\left(rac{1}{
ho},\infty
ight) = \widetilde{m}\left(rac{1}{
ho},c
ight) + \widetilde{N}\left(rac{1}{
ho},c
ight) + K(
ho,c) \quad (\sigma <
ho < + \infty),$$

where

(44)
$$K(\rho, c) = \begin{cases} 0 \quad (c = \infty) \\ \log |C_{-1}| + \varepsilon_1 \left(\frac{1}{\rho}, c\right) \quad (c = \xi, C_{-1} \neq 0) \\ \log |\xi - c| + \varepsilon_2 \left(\frac{1}{\rho}, c\right) \quad (c \neq \xi, \infty). \end{cases}$$

In fact, for the special case $c = \xi$ we can attain to the second result of (44) by considering the auxiliary function

$$g(\lambda) = \begin{cases} \frac{f(\lambda) - \xi}{\rho \lambda} = \frac{1}{\rho} \sum_{\mu=1}^{\infty} C_{-\mu} \lambda^{\mu-1} & (C_{-1} \neq 0, \ \lambda \neq 0) \\ \frac{C_{-1}}{\rho} & (\lambda = 0), \end{cases}$$

and the other two cases are trivial. Since, on the other hand, it is obvious that $\tilde{m}\left(\frac{1}{\rho}, c\right) = m(\rho, c)$ and $\tilde{N}\left(\frac{1}{\rho}, c\right) = N(\rho, c)$ both hold for every complex value c, finite or infinite, we obtain $(45) \qquad m(\rho, \infty) = m(\rho, c) + N(\rho, c) + K(\rho, c) \quad (c \neq \xi, \infty; \sigma < \rho < +\infty),$ where $K(\rho, c) = \log |\xi - c| + \varepsilon_2\left(\frac{1}{\rho}, c\right)$. The application of (40) and (41)

No. 4]

to (45) yields the relation

$$egin{aligned} m(
ho,\,\infty) &= rac{1}{2\pi} \int_0^{2\pi} m(
ho,\,se^{i heta}) d heta + rac{1}{2\pi} \int_0^{2\pi} \log rac{\mid T(
ho e^{-it})\mid}{s} dt + \log s \ &+ rac{1}{2\pi} \int_0^{2\pi} arepsilon_2 igg(rac{1}{
ho},\,se^{i heta}igg) d heta \end{aligned}$$

valid for $\sigma < \rho < +\infty$; and by utilizing $\log s = \log^+ s - \log^+ \frac{1}{s}$ and $\left| \varepsilon_2 \left(\frac{1}{\rho}, se^{i\theta} \right) \right| \leq \log^+ s + \log 2$ to this result, we can easily show the validity of the inequality required in the statement of the theorem.

Suppose next that the ordinary part of $T(\lambda)$ is given by $\sum_{\mu=0}^{\infty} e_{\mu} \lambda^{\mu}$ where $e_d \neq 0$. We consider the function $f(\lambda) = T\left(\frac{1}{\lambda}\right)$ or the function $\varphi(\lambda, c)$ defined at the beginning of the proof of Theorem 57, according as $c = \infty$ or $c \neq \infty$. If we set

$$arepsilon igg(rac{1}{
ho}, c igg) \! = \! rac{1}{2\pi} \! \int_{_0}^{_{_2\pi}} \! \! \log \mid T\!(
ho e^{-it}) \mid dt \! - \! rac{1}{2\pi} \! \int_{_0}^{_{_2\pi}} \! \! \log \mid T\!(
ho e^{-it}) \! - \! c \mid dt \ (c \! = \! \infty, \, \sigma \! < \!
ho \! < \! + \! \infty),$$

then, by reasoning exactly like that applied before, we can verify with the help of these auxiliary functions that (46) $m(\rho, \infty) = m(\rho, c) + N(\rho, c) + K'(\rho, c),$

where

$$K'(
ho,\,c) \!=\! egin{cases} \log |e_d|\!+\!d\,\log
ho\!+\!arepsilon\!igg(rac{1}{
ho},\,cigg) & (c\!
e\!\infty) \ d\,\log
ho & (c\!=\!\infty); \end{cases}$$

and here $\left|\varepsilon\left(\frac{1}{\rho},c\right)\right| \leq \log |c| + \log 2$. Since (46) and (42) enable us to conclude that

the desired inequality in the statement of the theorem is established in the same manner as before.