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Summary. In his fundamental paper [27], Stinespring proved
several dominated convergence theorems for operators measurable
w.r.t. a gage space. In this paper we state and prove some dominated
convergence theorems. One of our theorems is a generalisation of
a theorem of Stinespring [2]. In the others, we obtain some results
under assumptions, which are weaker than those of Stinespring.

Throughout this paper, the notation and terminology will be the
same as those of Segal [1] and Stinespring [2]. Let (H, 2, m) be
a regular gage space, namely, H is a complex Hilbert Space, 2 a
ring of operators (=von Neumann Algebra) acting on H and m, a
gage on £, such that for any projection P, m(P)=0 implies P=0.
Denote the L' and L*-space of the gage space by L'(H, 2, m)= L2, m)
and L*(H, 2, m)=L*2, m), respectively. A sequence of measurable
operators (measurable w.r.t, 2 in the sense of [17), is said to converge
grossly to a measurable operator A, [2, p. 26], if, for every T in
L'(2, m), and for every ¢>0, there exists a positive integer N such
that for all =N, there exists a projection P, with the property
that || (4,—A)P,||<e and |m(TQ)|<e for any projection Q<I—P,
(Q in ). Our definition of convergence in measure will be the same
as that of Stinespring [2, p. 23]. It is known [2, p. 27] that
convergence in measure always implies gross convergence,

Let (A,) be a sequence of measurable operators converging grossly
to a measurable operator A. Suppose there exists an operator B in
L'(2, m), such that |A,—A|<B,n=1,2,---., From a dominated
convergence theorem of Stinespring [2, Theorem 4.6] it follows that
A,—A—0 in L'(2, m), hence in particular m(4,)—m(4).

However, there are cases, which are not covered by this Theorem,
We give below an example of a sequence (A,) of non-negative,
integrable operators converging grossly to zero (the zero operator)
and m(A4,)—m(0)=0, but there does not exist any integrable operator
T with A,=T for all n. Let 2 be a continuous finite factor and
m, the standard faithful normal trace on 2 with m(I)=1. Let P,
be a projection with m(P,)=1/2. Let P, be a projection contained
in I—P, with m(P,)=1/2%, ..., and in general P, a projection contained
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in I-P—P,— ... —P,_, with m(P,)=1/2". Let A,=2"/n P,. Each
A, is integrable and (A4,) converges in measure and hence grossly
to zero and m(4,)=1/n—0=m(0). If possible let there exist a
non-negative measurable operator T such that A,<T for all =.

Then easy to see that m(T)=m(TP)+ +++ +m( TPn)—_-z”} % for all
k=1

n, which shows that T cannot be integrable. In order to cover such
exceptional cases also, we shall state and prove the following theorem
and show how it applies to the above example.

In what follows, (H, 2, m) will denote a regular gage space and
(4,) and (B,) will stand for a pair of sequences of measurable
operators,

(*x) (A,) converges grossly to a measurable operator A (A,—A,
grossly, say).

(xx) Hach B, is non-negative (B,=0, say), B, in LY(Q, m), B,—B
grossly, B in L'(2, m), and m(B,)—m(B).

We shall discuss some modes of numerical convergence of (4,),
where each A4, is dominated by B, in various types.

Theorem 1. If the pair (A,), (B, given by (x) and (xx)
respectively, satisfy, |A,—A|=B,,n=1,2,-.-, then A,—A—0 in
L2, m).

Remark. If we assume B, is the same for all n, we obtain
the dominated convergence theorem of Stinespring [2, Theorem 4.6]
as a special case.

Proof. We apply the following version of Fatou’s lemma due
to Stinespring [2, Theorem 4.10]:—

If (T, is a sequence of non-negative measurable operators
converging grossly to a measurable operator T, then

m(T)=lim inf m(T,).
As A,—A grossly implies |4,—A|—0 grossly, S,=B,—|A4,—A|—
B grossly and S,=0.
Now

m(B)=lim inf m(B,—|A,—A])
=lim sup m(B,—|4,—A})

=lim sup m(B,)
=m(B).
Hence m(B,—|A,—A|)—m(B); or m(|A,—A|)—0; or A,—A—0 in
L2, m). This proves Theorem 1.
The assumption of Theorem 1 is satisfied for the sequences of
operators constructed in the previous example, Thatis,let 4,, P,, ---
ete, be as given in that example. Put B,=A4,+1—1/n)/(1—1/2")-
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(I—-P,). Clearly, 0=4,=B, for each n, (B,) converges in measure
and hence grossly to I and further m(B,)=1/n+(1—1/n)=1.

Corollary 1.1. If (4,) and (B,) given by (x) and (xx) respec-
tively satisfy the condition |A,—AP=B,, n=1,2, .-, then A,—A
—0 in L2, m).

To prove this one has only to consider the sequence (S,) where
S,=B,—|A,— A}, (|A,—A|*=(A,— A)*(A,— A)), and proceed as in the
case of Theorem 1.

Theorem 2. Let each A, given by (x) be self-adjoint. Suppose
that there exist operators B and B, satisfying (xx) such that |A,|=B,,
n=1,2, ..., Then the limit-operator A of A, is self-adjoint, A
belongs to L2, m) and m(A,)—m(A).

Proof. It has been proved by Stinespring [1, p. 297, that if a
sequence (C,) of non-negative measurable operators converges grossly
to a measurable operator C, then C is non-nagative, Since for each
n, (B,+A4,) is non-negative, it follows by the result of Stinespring,
that B is non-nagative, A is self-adjoint, and —B=<A<B. As B is
integrable, so is A, so that m(A4) is finite, If m(A4,)=m(A4) for all but
finitely many m, then there is nothing to prove. Hence, in the most
general case, (4,) consists of two subsequences (4;,) and (4,,) such
that for all n, m(4;,)=2m(4)>m(4;,). Let S,=B;,+|A|—(4;,—A).
Each S, is non-negative. And on applying Fatou’s lemma,

m(B+| A)<lim inf m(B;,+| A|—(A;,—A4))
=lim sup m(Bi,+|A4|—(4i,—A4))

n—oo

=lim sup m(B;,+|A|)

=m(B+| 4.
Thus as n—c, m(S,)— m(B+|A|) and m(A;,—A)—0.

For the other part, one need only consider S,=B;,+|A|—(A—A4,,)
and proceed as before. Hence the Theorem.

For any measurable operator 7, put Re T=1/2(T+ T*) and Im
T=1/2i(T—T*). Applying the proof of Theorem 2 separately to
(ReA,) and (ImA,) in the place of (A4,) given by (x) we have
immediately the following

Corollary 2.1. FEach A, is dominated by B,, satisfying (xx)
such that |Re A, |=B,,and |Im A, |=<B,, n=1,2, ..., Then m(4,)—
m(A).

Now let (4,) and A satisfy the assumptions of Corollary 2.1,
It is worthwhile examining whether m(| 4,—A|)—0 as n—o, The
method of proof of Theorem 2 fails to apply even when each A4, is
self-adjoint. We encounter the following difficulty:— | A4, |<B, for
each n. Still it does not follow that |4,—A|<B,+|A]|, since the
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inequality |A4,—A|=<|A,|+|A| is not in general valid for operators.
Hence we cannot conclude that the operator S,=B,+|A4|—|A4,—A4]|
is non-negative, so that Fatou’s lemma is not applicable to the
sequence (S,).
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