70. On Fourier Series with Gaps*)

By Jia-Arng Chao
Aeronautical Research Laboratory, Taichung, Taiwan, China

(Comm. by Zyoiti Suetuna, m.J.A., April 12, 1966)

1. Introduction. Let $\left\{n_{k}\right\}(k=1,2, \cdots)$ be a strictly increasing sequence of positive integers. Let $f(x)$ be a real function, L-integrable over $(-\pi, \pi)$ and having a period 2π, whose Fourier coefficients a_{n}, b_{n} vanish except for $n=n_{k}$. Namely

$$
\begin{equation*}
f(x) \sim \sum_{k=1}^{\infty}\left(a_{n_{k}} \cos n_{k} x+b_{n_{k}} \sin n_{k_{k}} x\right), \tag{1}
\end{equation*}
$$

supposing for simplicity that the constant term also vanishes.
Let x_{0} be a fixed point and $\alpha>0$, we write $f \in \operatorname{Lip} \alpha(P)$ if

$$
\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right| \leqq A|h|^{\alpha}
$$

holds for all small h. We assume throughout that " A " denotes an absolute constant and two A 's might be not equal even in the same equation for the sake of conveniency. M. and S. Izumi [1] proved the following

Theorem A. If f has the Fourier series (1) with the gap condition
(G_{1})
and $f \in \operatorname{Lip} \alpha(P),(\alpha>0)$, then

$$
a_{n_{k}}, b_{n_{k}}=O\left(n_{k}^{-\alpha \beta}\right)
$$

Theorem B. If f has the F.s. (1) with the Hadamard gap (G_{2}) $n_{k+1} / n_{k} \geqq \lambda>1$
and $f \in \operatorname{Lip} \alpha(P),(0<\alpha<1)$, then f belongs to $\operatorname{Lip} \alpha$ class in $(-\pi, \pi)$.
Using the Izumis' method in Theorem A, we shall prove a group of theorems under a general gap condition ${ }^{1,2)}$

$$
\begin{equation*}
n_{k+1}-n_{k} \geqq A F\left(n_{k}\right), n_{k}-n_{k-1} \geqq A F\left(n_{k}\right) \tag{G}
\end{equation*}
$$

where $F\left(n_{k}\right) \uparrow \infty$ as $k \uparrow \infty$ and $F\left(n_{k}\right) \leqq n_{k}$ for all k.
Theorem 1. If f has the F.s. (1) with the gap (G) and $f \in \operatorname{Lip} \alpha(P),(\alpha>0)$, then

[^0]$$
a_{n_{k}}, b_{n_{k}}=O\left(F\left(n_{k}\right)^{-\alpha}\right) .
$$

In order to have a similar estimation as in Theorem B for a weaker gap condition, we now consider a new gap

$$
\begin{equation*}
n_{k+1}-n_{k} \geqq A n_{k}^{\beta} k^{\gamma} \quad(0<\beta<1, \gamma>0) . \tag{G}
\end{equation*}
$$

This is weaker than $\left(G_{2}\right)$, but stronger than $\left(G_{1}\right)$. A simple example of this kind of gap is $\left(k^{[\log k]}\right)_{k=1,2, \ldots}$.

We first derive a theorem concerning the absolute convergence.
Theorem 2. If f has the F.s. (1) with the gap (G_{3}) and $f \in \operatorname{Lip} \alpha(P),(\alpha>0)$, then (1) converges absolutely when $\alpha \beta+\alpha \gamma+\beta>1$.

Supposing $\gamma=0$ throughout the proof, $\left(G_{3}\right)$ becomes $\left(G_{1}\right)$, we can easily get the following

Corollary. ${ }^{3}$) If f has the F.s. (1) with gap (G_{1}) and $f \in \operatorname{Lip} \alpha(P)$, ($\alpha>0$), then (1) converges absolutely when $\alpha \beta+\beta>1$.

Finally we shall prove the following
Theorem 3. If f has the F.s. (1) with the gap $\left(G_{3}\right)$ and $f \in \operatorname{Lip} \alpha(P),(\alpha>0)$, putting $\gamma=1 / \alpha$, then
(i) f belongs to the $\operatorname{Lip} \alpha \beta$ class in $(-\pi, \pi)$ when $\alpha \beta<1$;
(ii) f belongs to the Lip δ class in $(-\pi, \pi)$, for any $\delta<1$, when $\alpha \beta=1$; ${ }^{\text {) }}$
(iii) f belongs to the Lip 1 class in $(-\pi, \pi)$ when $\alpha \beta>1$.
2. Proof of Theorem 1. a) $0<\alpha<1$. We can suppose that $x_{0}=0$. Let $c_{n_{k}}$ be the n_{k}-th complex Fourier coefficient of f, then

$$
c_{n_{k}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) T_{M_{k}}(x) e^{-i n_{k} x} d x
$$

where $T_{M_{k}}(x)$ is a trigonometrical polynomial of degree $M_{k}=A F\left(n_{k}\right)$ and with constant term 1. Now

$$
\begin{aligned}
c_{n_{k}}= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) T_{M_{k}}(x) e^{-i n_{k} x} d x \\
= & \frac{-1}{2 \pi} \int_{-\pi}^{\pi} f\left(x+\frac{\pi}{n_{k}}\right) T_{M_{k_{k}}}\left(x+\frac{\pi}{n_{k}}\right) e^{-i n_{k} x} d x \\
= & \frac{1}{4 \pi} \int_{-\pi}^{\pi}\left[f(x) T_{M_{k}}(x)-f\left(x+\frac{\pi}{n_{k}}\right) T_{M_{k}}\left(x+\frac{\pi}{n_{k}}\right)\right] e^{-i n_{k} x} d x \\
= & \frac{1}{4 \pi} \int_{-\pi}^{\pi}\left[f(x)-f\left(x+\frac{\pi}{n_{k}}\right)\right] T_{M_{k}}(x) e^{-i n_{k} x} d x \\
& +\frac{1}{4 \pi} \int_{-\pi}^{\pi} f\left(x+\frac{\pi}{n_{k}}\right)\left[T_{M_{k}}(x)-T_{M_{k}}\left(x+\frac{\pi}{n_{k}}\right)\right] e^{-i n_{k} x} d x \\
= & I+J, \text { say. }
\end{aligned}
$$

Since the Fourier exponents of $f\left(x+\pi / n_{k}\right)$ with non-vanishing Fourier coefficients are the same as that of $f(x)$ and the trigonometrical
3) This corollary appeared as part of Theorem 2 in [1].
4) We really proved that $f(x+h)-f(x)=o\left(|h|^{\delta}\right)$, and then $f \in \lambda_{\delta}$, by the notation in [2].
polynomial $T_{M_{k}}(x)-T_{M_{k}}\left(x+\pi / n_{k}\right)$ is of degree not exceeding M_{k} and with the constant term 0 , we have $J=0$. We take $T_{M_{k}}(x)=2 K_{M_{k}}(x)$, where $K_{\mu_{k}}(x)$ is the Fejér kernel of order M_{k}. Then we get

$$
\left|T_{M_{k}}(x)\right|=\frac{\sin ^{2}\left(M_{k}+1\right) \frac{1}{2} x}{\left(M_{k}+1\right) \sin ^{2} \frac{1}{2} x} \leqq A M_{k} \quad \text { and } \quad\left|T_{M_{k}}(x)\right| \leqq \frac{A}{M_{k} x^{2}}
$$

Now

$$
\begin{aligned}
c_{n_{k}} & =I=\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left[f(x)-f\left(x+\pi / n_{k}\right)\right] T_{M_{k}}(x) e^{-i n_{k} x} d x \\
& =\frac{1}{4 \pi}\left(\int_{-1 / M_{k}}^{1 / M_{k}}+\int_{1 / M_{k}}^{\pi}+\int_{-\pi}^{-1 / M_{k}}\right)\left[f(x)-f\left(x+\pi / n_{k}\right)\right] T_{M_{k}}(x) e^{-i n_{k} x} d x \\
& =I_{1}+I_{2}+I_{3}, \text { say }
\end{aligned}
$$

where

$$
\left|I_{1}\right| \leqq A M_{k} \int_{-1 / M_{k}}^{1 / M_{k}}\left|f(x)-f\left(x+\pi / n_{k}\right)\right| d x \leqq A M_{k}^{-\alpha}=O\left(F\left(n_{k}\right)^{-\alpha}\right)
$$

and

$$
\begin{aligned}
\left|I_{2}\right| & \leqq A M_{k}^{-1} \int_{1 / M_{k}}^{\pi}\left|f(x)-f\left(x+\pi / n_{k}\right)\right| \frac{d x}{x^{2}} \\
& \leqq A M_{k}^{-1} \int_{1 / M_{k}}^{\pi} x^{\alpha-2} d x \leqq A M_{k}^{-\alpha}=O\left(F\left(n_{k}\right)^{-\alpha}\right)
\end{aligned}
$$

Similarly we can get $\left|I_{3}\right|=O\left(F\left(n_{k}\right)^{-\alpha}\right)$. Therefore we have

$$
a_{n_{k}}, b_{n_{k}}=O\left(F\left(n_{k}\right)^{-\alpha}\right)
$$

b) $\alpha \geqq 1$. In this case we use the trigonometrical polynomial

$$
T_{M_{k}}(x)=\left(2 K_{\left[\mu_{k} / p\right]}(x)\right)^{p} / \int_{-\pi}^{\pi}\left(2 K_{\left[N_{k} / p\right]}(x)^{p} d x\right.
$$

instead of Fejér kernel, then we have

$$
\left|T_{M_{k}}(x)\right| \leqq A M_{k} \quad \text { and } \quad\left|T_{M_{k}}(x)\right| \leqq A M_{k}^{1-2 p} x^{-2 p}
$$

Therefore, in the estimation of I_{1} and I_{2}, α may be greater than or equal to 1 . Thus the theorem holds also for $\alpha \geqq 1$.
3. Proof of Theorem 2. We shall prove first that $n_{j} \geqq j^{\delta}$ for all sufficient large j and $\delta \leqq \frac{\gamma+1}{1-\beta}$. Suppose $n_{k} \geqq k^{\delta}$ for some $k \geqq k_{0}$, then

$$
\begin{aligned}
& n_{k+1} \geqq n_{k}+A n_{k}^{\beta} k^{\gamma} \geqq k^{\delta}+A k^{\delta \beta+\gamma}, \\
& (k+1)^{\delta}=k^{\delta}+\delta k^{\delta-1}+\cdots .
\end{aligned}
$$

We have $n_{k+1} \geqq(k+1)^{\delta}$ since $\alpha \beta+\gamma \geqq \delta-1$. Now, by Theorem 1 , taking $F\left(n_{k}\right)=n_{k}^{\beta} k^{\gamma}$, we have ${ }^{5)}$

$$
\sum_{k=1}^{\infty}\left|c_{n_{k}} e^{i n_{k} x}\right| \leqq A \sum_{k=1}^{\infty} n_{k}^{-\alpha \beta_{k}-\alpha \gamma} \leqq A \sum_{k=1}^{\infty} k^{-\alpha \beta \delta-\alpha \gamma}
$$

which is finite when $\alpha \beta \delta+\alpha \gamma>1$. δ may be taken near to $\frac{\gamma+1}{1-\beta}$, therefore (1) converges absolutely when $\alpha \beta+\alpha \gamma+\beta>1$.

[^1]4. Proof of Theorem 3. We need the following

Lemma. $\sum_{k=1}^{K} n_{k}^{1-\alpha \beta} k^{-1}=O(1) \quad$ if $\alpha \beta>1$;

$$
\begin{array}{ll}
=O(\log K) & \text { if } \alpha \beta=1 ; \\
=O\left(n_{k}^{1-\alpha \beta}\right) & \\
\text { if } \alpha \beta<1 .
\end{array}
$$

Proof of this Lemma, a) $\alpha \beta>1$ and b) $\alpha \beta=1$ are trivial cases. c) $\alpha \beta<1$. We divide again into 3 cases according to the order relations between n_{k} and k.
i) $n_{k}^{1-\alpha \beta}>k$; In this case, $n_{j+1}^{1-\alpha \beta}(j+1)^{-1}>n_{j}^{1-\alpha \beta_{j}-1}$ for all j. Hence

$$
\sum_{k=1}^{K} n_{k}^{1-\alpha \beta} k^{-1} \leqq K n_{K}^{1-\alpha \beta} K^{-1}=O\left(n_{K}^{1-\alpha \beta}\right)
$$

ii) $n_{k}^{1-\alpha \beta} \sim k$; In this case,

$$
\sum_{k=1}^{K} n_{k}^{1-\alpha \beta} k^{-1}=O(K)=O\left(n_{k}^{1-\alpha \beta}\right)
$$

iii) $n_{k}^{1-\alpha \beta}<k$; We may suppose $n_{k}^{1-\alpha \beta} \sim k^{\delta}$ for some $\delta<1$. Then

$$
\sum_{k=1}^{K} n_{k}^{1-\alpha \beta} k^{-1}=O\left(\sum_{k=1}^{K} k^{-(1-\delta)}\right)=O\left(K^{1-(1-\delta)}\right)=O\left(K^{\delta}\right)=O\left(n_{k}^{1-\alpha \beta}\right)
$$

Therefore our Lemma is proved.
Proof of Theorem 3. By the argument in the proof of Theorem 2, in the case $\gamma=1 / \alpha$, we see that the series (1) converges uniformly to f, i.e.

$$
f(x)=\sum_{k=1}^{\infty} c_{n_{k}} e^{i n_{k} x}
$$

Now, by Theorem 1, ${ }^{\text {6 }}$

$$
\begin{aligned}
|f(x+h)-f(x)| & =\left|\sum_{k=1}^{\infty} c_{n_{k}} e^{i n_{k} x}\left(e^{i n_{k} h}-1\right)\right| \\
& =\left|\sum_{k=1}^{\infty} c_{n_{k}} e^{i n_{k} x} e^{i n_{k} h / 2} 2 i \sin n_{k} h / 2\right| \\
& \leqq 2 \sum_{k=1}^{\infty}\left|c_{n_{k}}\right|\left|\sin n_{k} h / 2\right| \leqq A \sum_{k=1}^{\infty} n_{k}^{-\alpha \beta} k^{-1}\left|\sin n_{k} h / 2\right|
\end{aligned}
$$

If h is small, then there is a K such that $n_{K+1}^{-1}<|h| \leqq n_{K}^{-1}$ and

$$
|f(x+h)-f(x)| \leqq A\left(\sum_{k=1}^{K}+\sum_{k=K+1}^{\infty}\right) n_{k}^{-\alpha \beta} k^{-1}\left|\sin n_{k} h / 2\right|=A(S+T), \text { say. }
$$

We can suppose that, by some modifications, ${ }^{7}$)

$$
\begin{equation*}
n_{2 k} / n_{k} \geqq \lambda>1 \quad \text { for all } k . \tag{2}
\end{equation*}
$$

Then

[^2]\[

$$
\begin{aligned}
|T| & \leqq \sum_{k=K+1}^{\infty} n_{k}^{-\alpha \beta} k^{-1}=\sum_{\nu=0}^{\infty} \sum_{k=2^{\nu}(K+1)}^{2^{\nu+1}(K+1)} n_{k}^{-\alpha \beta} k^{-1} \\
& \leqq \sum_{\nu=0}^{\infty} n_{2^{\nu}(K+1)}^{-\alpha \beta}\left[2^{\nu}(K+1)\left(2^{\nu}(K+1)\right)^{-1}\right]=\sum_{\nu=0}^{\infty} n_{2^{\nu}(K+1)}^{-\alpha \beta} \\
& =n_{K+1}^{-\alpha \beta}\left[1+\left(\frac{n_{2(K+1)}}{n_{K+1}}\right)^{-\alpha \beta}+\left(\frac{n_{2(K+1)}}{n_{K+1}}\right)^{-\alpha \beta}\left(\frac{n_{2^{2}(K+1)}}{n_{2(K+1)}^{-\alpha \beta}}\right)^{-\cdots}+\cdots\right] \\
& \leqq n_{K+1}^{-\alpha \beta}\left(1+\lambda^{-\alpha \beta}+\lambda^{-2 \alpha \beta}+\cdots\right)=O\left(n_{K+1}^{-\alpha}\right)=O\left(|h|^{\alpha \beta}\right) .
\end{aligned}
$$
\]

By Lemma, we have:
i) For $\alpha \beta<1$;

$$
|S| \leqq \frac{1}{2}|h| \sum_{k=1}^{K} n_{k}^{1-\alpha \beta} k^{-1}=O\left(|h| n_{K}^{1-\alpha \beta}\right)=O\left(|h|^{\alpha \beta}\right)
$$

Hence $f \in \operatorname{Lip} \alpha \beta$ in $(-\pi, \pi)$.
ii) For $\alpha \beta=1$;

$$
\begin{aligned}
|S| & \leqq \frac{1}{2}|h| \sum_{k=1}^{K} n_{k}^{1-\alpha \beta} k^{-1}=O(|h| \log K) \\
& =O\left(|h|^{\delta} n_{k}^{-1+\delta} \log K\right)=O\left(|h|^{\delta}\right) \quad \text { for any } \delta<1 .
\end{aligned}
$$

Hence $f \in \operatorname{Lip} \delta$ in $(-\pi, \pi)$.
iii) For $\alpha \beta>1$;

$$
|S| \leqq \frac{1}{2}|h| \sum_{k=1}^{K} n_{k}^{1-\alpha \beta} k^{-1}=O(|h|)
$$

Hence $f \in \operatorname{Lip} 1$ in $(-\pi, \pi)$. Therefore the proof is completed.

References

[1] M. Izumi and S. Izumi: On lacunary Fourier series. Proc. Japan Acad., 41 (8), 648-651 (1965).
[2] A. Zygmund: Trigonometrical Series (2nd ed.), Vol. 1, Cambridge (1959).

[^0]: *) This paper is a part of the thesis which the author submitted to the Institute of Mathematics of National Tsing Hua University (Taiwan, China) for the M. S. degree. The author wishes to express here his hearty thanks to Professors S. M. Lee and S. Izumi for their valuable suggestions.

 1) If F satisfies some regularity condition, for example, $F\left(n_{k} / 2\right)>A F\left(n_{k}\right)$, then (G) may be replaced by (G^{\prime})

 $$
 n_{k+1}-n_{k} \geqq A F\left(n_{k}\right) .
 $$

 For if $n_{k} / n_{k-1} \leqq 2$, say, then by a suitable choice of A, we have

 $$
 n_{k}-n_{k-1} \geqq A F\left(n_{k-1}\right) \geqq A F\left(n_{k} / 2\right) \geqq A F\left(n_{k}\right)
 $$

 2) " A " may be included in F, but this form is convenient for later use.
[^1]: 5) In this special case, the gap condition $\left(G_{3}\right)$ implies, by a suitable change of $A, n_{k+1}-n_{k} \geqq A n_{k}^{\beta} k^{\gamma}, n_{k}-n_{k-1} \geqq A n_{k}^{\beta} k^{\gamma} ; \quad$ c.f. [1].
[^2]: 6) See the foot-note 5).
 7) If not, we insert several terms between the n_{k}-th and $n_{2 k}$-th terms of given Fourier series so that (2) holds and the coefficients of inserted terms are small enough. Then, following the same arguments, we have, $f+g$ has the desired result, where g is the sum of inserted terms which may be taken as differentiable. Therefore so is f.
