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(Comm. by Kinjir6 KUNUGI, M.J.A., Sept. 12, 1966)

Let P be a topological property.) A topological space X is
called a P* space if a subset U of X is open in X whenever
UK is open in K for any subset K in X satisfying P. The
purpose of this note is to investigate properties of P* spaces and
as applications to obtain some extensions of a theorem of Gleason
[2 and the Ascoli’s theorem.

1. Let E be a set, then we can consider the lattice of all
topologies on E, that is, the ordering of the lattice can be defined
as follows; X>= Y if O(X)O(Y), where O(X) (or O(Y)) is the set
of all open subsets in X (or Y). For any family {X.} of topological
spaces on E, VX or AX denotes the join or the meet of {X}
([4, [6). A topological property P is said to have the condition
(C) if it satisfies the following condition; any space consisting of
one point has P, and any continuous image of X also satisfies P if
a topological space X has P. Examples of topological properties
having (C) are "compact", "separable", "connected", and "arcwise
connected",) and any k-space (5) is a P* space, where P is
"compact".

We first prove the following theorem.
1.1. Theorem. Let a topological property P have (C). If

{X,} are P* spaces on the same basic set, then AX is also a P*
space.

Proof. Put Z= A X,, then Z is a quotient space (cf. [5) of
X,, where ]X, denotes the sum of X.) Since {X,} are P*
spaces, it is clear that X. is a P* space, so by the next lemma,
the theorem is proved.

1.2. Lemma. Let P be a topological property satisfying (C).
If X is a P* space then any quotient space of X is also a P*
space.

Proof. The lemma can be proved easily.

1) Let P be a property of topological spaces. P is said to be topological if
it is invariant under homeomorphisms.

2) X is arcwise connected if for two points a, b in X there is a continuous
image of closed interval containing a, b in X.

3) The fact is due to Professor K. Morita. In Y’. X, {X,} are mutually dis-
joint and any X is open in . X.
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Let P be a topological property. A topological space X is
called a w-locally P space (or a locally P space) if for any point

in X, there is a neighborhood (or an arbitrarily small neighbor-
hood) having P. It is clear that a locally P space is always a
w-locally P space, but the converse is false in general (for example,
if P is "connected").

1.3. Theorem. Any P* space is a meet of w-locally P
spaces.

Proof. Let X be a P* space and let be the family of sub-
sets in X satisfying P. For any Ke , we define a topological
space X as follows: O(X)---{(K U)@ M; U e O(X) and M is any
subset which is disjoint from K}. Since K has P in X and any
space consisting of one point satisfies P, X is a w-locally P space.
In order to prove that X---/X, we need only to show that
/h X._<_ X, because it is clear that /X>= X. If W e 0(/ X), then
WeO(X) for any K, so W is of form (KU)M, where U
is an open set in X and MK--. WK--K U, and it is
open in K. Since Xis a P* space, Wis open in X.

1.4. Corollary. Any P* space is a quotient space of a
w-locally P space.

Let P be a topological property, then P* can be also regarded as a
topological property, so we can define P** spaces as (P*)* spaces.

1.5. Theorem. If P has (C), P** spaces coincide with P*
spaces.

Poof. It is clear that a P space (=a space having P)is a P*
space for any topological property P, so any P* space is a P**
space. We need only to prove that any P** space is a P* space.
Let X be a P** space, then X is a quotient space of a w-locally
P* space by the above corollary. On the other hand, by next lemma,
any w-locally P* space is a P* space. Therefore X is a quotient
space of a P* space. By Lemma 1.2, X is a P* space.

1.6. Lemma. Any w-locally P* space is a P* space.
Proof. The lemma can be proved easily.
A topological property P is said to have the condition (N) if

for any family of subsets {A,} in a topological space such that any A,
has P and A,4:, [JA has P. The topological property "con-
nected" or "arcwise connected" has (N).

1.7o Theorem. If P has (N), P* spaces coincide with
w-locally P spaces.

Proof. It is clear that a w-locally P space is a P* space. To
prove the converse, let X be a P* space. Then, by (N), there is
the largest P space C in X containing x for any xe X. In order
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to prove the theorem, it suffices to show that C is open for any
xeX. For any Khaving P, (1) if CK=/:,CuK is also a P
space by (N). Since C is the largest P space, CK, so CK=
K is open in K, (2) if CK=,CK is, of course, open in K.
Since X is a P* space, C is open.

Remark. In Theorem 1.7, that P has (N) is not a necessary
condition in order that P* spaces coincide with w-locally P spaces:
If P has (C) and if Q=P*, then Q* spaces coincide with w-locally
Q spaces (they are also equal to Q spaces, cf., Theorem 1.5).

1.8. Theorem. Suppose that P has (C), then any meet of
locally P* spaces is also a locally P* space.

Proot. Let {X} be locally P* spaces. Let X= AX and let
0 be an open subset in X. Since O is open in X, the restriction
Y of X to 0 is a w-locally P* space, so it is a P* space. By
Theorem 1.1, Y=AY is a P* space. Since it is clear that Y is
the restriction of X to O, X is a locally P* space.

2. Gleason 2 has proved the following theorem: let S be a
topological space. Then there exists a locally connected topological
space S* and a continuous one-to-one mapping of S* onto S such
that if f is any continuous mapping of a locally connected space A
into S, then f can be factored in the form f=of* where f* is a
continuous mapping of A into S*. Since if P is "connected", locally
P* spaces coincide with locally connected spaces, the following
theorem is an extension of the theorem of Gleason.)

2.1. Theorem. Let P have (C) and let S be a topological
space. Then there exists a locally P* space S* and a continuous
one-to-one mapping of S* onto S such that if f is any con-
tinuous mapping of a locally P* space A into S, then f--of*
where f* is a continuous mapping of A into S*.

Proof. Put S*=A{S;S is a locally P* space and S>__S}.
By Theorem 1.8, S* is also a locally P* space. Let f be any
continuous mapping of A into S, then we define a topological space
T as follows; O(T)={W; f-(W)e O(A)}. We see that T is a locally
P* space. For, let W be any open set in T, then f-(W)--U e O(A).
Since A is a locally P* space, U is a w-locally P* space, so U is a
P* space (Lemma 1.6). We can here regard that W is a quotient
space of U. By Lemma 1.2, W is also a P* space, so T is a
locally P* space. Now since f is continuous mapping of A into T
and T>=S*, the theorem is proved.

4) The similar theorem was proved in [3 for locally arcwise connected spaces.
If P is "arcwise connected", locally P* spaces coincide with locally arcwise
connected spaces. In [2_ Gleason discussed a generalization of his theorem, but
our method is a little different from his.
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o Let P be a topological property. A topological space X is
called a P0* space if a subset U(x0) in X is a neighborhood of
x0 in X, whenever UK is a neighborhood of x0 in K for any
K( x0) satisfying P. A neighborhood here need not be an open set.
It is clear that a P0 space is a P* space. If P is "compact", P0*
spaces equal to ko spaces 7. Let X. be a family of topological
spaces on the same set E. Then we define a space X on E as follows:
V(x) is a neighborhood of x in X if and only if V(x) is a neigh-
borhood of x in X for any 3". A neighborhood here need not be
an open set. The space X is not a topological space in general 6_.
We will call X the w-meet of {X}.)

3.1. Theorem. For any Po* space X, X is a w-meet of
w-locally P spaces.

Proof. The proof is almost similar to the one of Theorem 1.3.
Let X be a topological space and let C(X) be the set of all con-

tinuous functions on X. Wada [7] has proved the following fact,
which is useful for a kernel representation of compact linear oprators
on C(X) for a k0 space X: If H (cC(X), X is a k0 space) is relative
compact in the topology of (R)-convergence, then H is equicontinuous,
where (R) is the family of all compact subsets in X (as to the kernel
representation, see R. E. Edwards: Functional analysis, theory, and
applications (1965) p. 662).

We obtain moreover the following.
3.2. Theorem. Let X be a Po* space. If H in C(X) is

precompact in the topology of (R)-convergence, then H is equicon-
tinuous (and is pointwise bounded), where is the family of all
P-subsets in X.

Proof. Since X is a P0* space, by Theorem 3.1, X is the w-
meet of w-locally P spaces {X}. Then we can regard that HC(X)
for any K and H is precompact in C(X) under the topology of
-convergence, where -{K and all points in XK}, so H is
equicontinuous in X (cf. 1), that is, for e>0, there is a
neighborhood U(xo)such that for any x e U(xo) and for any
u e H u(x).-U(Xo) I< e. W(xo)-- U U(xo) is a neighborhood of X, so
for any x e W(xo) and for any ue Hlu(x)-U(Xo)I<. This shows
that H is equicontinuous in X.

In general, the converse of the theorem is false, that is, when
X is a P0* space an equicontinuous set in C(X) which is pointwise
bounded need not be precompact in the topology of -convergence.
Suppose that P is "separable", then we see that any metric space

5) We used the symbol A, or A in 6J in the place of A or w-meet.
6) H is pointwise bounded if any xX H(x)={f(x); fH} is bounded.
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is a P0* space. If X is a metric space and (R)={all separable subsets
in X}, any H having the hypothesis in Theorem 3.2 is equicon-
tinuous, but we have the following:

Let X be a complete metric space and let (R)1 be a family of
subsets in X. Let the topology of l-convergence have the follow-
ing property; any equicontinuous and pointwise bounded set H in
C(X) is always l-precompact. Then (R)1 is a family of relative
compact subsets in X.

For, since X is a complete metric space, we need only to prove
that any S in (R) is totally bounded (--precompact). Let So( e (R))be
not totally bounded, then S cannot be covered by a finite family of
-spheres (for some >0). We put x e So arbitrarily. Then we

--1

can find a point zeS0 such that [2 S(x)z for any n, where
=1

S(x) is the open -sphere such that the center is x. We put here
f(x)=Max {-.d(x, z), 0}, where d(z, y) is the distance function on
X. Then we can prove that H--{fli--1, 2, 3, ...} is equicontinuous
and pointwise bounded, so H is (R)-precompact by the hypothesis.
But we see that IIf-f II0-sup If(x)-f(x)I>= for nero. This is

S
a contradiction.
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