152. The Lattice of Congruences of Locally Cyclic Semigroups

By Takayuki TAMURA and Wallace ETTERBEEK

University of California, Davis, California (Comm. by Kenjiro ShoDA, M.J.A., Sept. 12, 1966)

In [2] Dean and Oehmke proved Theorem 1. Using Theorem 2 proved by Tamura and Levin [4] we will give another proof for Theorem 1.

Theorem 1. The lattice of congruences on a locally cyclic semigroup is a distributive lattice.

Theorem 2. Let S be a locally cyclic semigroup, then $S = \bigcup_{i=1}^{n} S_i$ where $S_i \subseteq S_{i+1}$ and S_i is a cyclic semigroup.

Let C be a cyclic semigroup. Denote C by C=(n, m) where 1 generates C and n, m are non-negative integers or $n=m=\infty$. C is finite if and only if n, m are finite. See p. 19-20 [1].

Any congruence ρ on a cyclic semigroup C is determined uniquely by its induced homomorphic image C' a cyclic semigroup. We denote $\rho = \rho(n', m')$ where C' = (n', m') and

(1)
$$a\rho b$$
 if and only if $\begin{cases} a=b & a < n', b < n' \\ m' \mid (a-b) & a \ge n', b \ge n'. \end{cases}$

Proposition 1. Let C = (n, m) be a cyclic semigroup $\rho = \rho(n_1, m_1)$ is a congruence on C if and only if $n_1 \le n$, $m_1 \mid m$.

Proposition 2. Let S_1 , S_2 be cyclic semigroups such that $S_1 \subseteq S_2$ and 1 generates S_2 , k generates S_1 . $\rho_1 = \rho_1(n_1, m_1)$ and $\rho_2 = \rho_2(n_2, m_2)$ are congruences on S_1 and S_2 respectively with $\rho_1 = \rho_2 | S_1$ if and only if $n_2 \le n_1$ and $n_1 - r \le n_2 - 1$ where $n_1 \equiv r \pmod{k}$, $1 \le r \le k$, and $m = \operatorname{lcm}(k, m_2)$.

Definition 1. Let σ , ρ be congurences on a groupoid G. Then $\sigma \lor \rho$ is the smallest congruence containing σ and ρ and $\sigma \land \rho$ is the largest congruence contained in σ and ρ .

Since the identity relation is contained in all congruences and the universal relation contains all congruences and intersection preserves congruences for any congruences, σ , ρ on a groupoid G both $\sigma \lor \rho$ and $\sigma \land \rho$ exist.

In [5] Tamura proved the following.

Proposition 3. Let C be a cyclic semigroup; let $\sigma = \sigma(n_1, m_1)$, $\rho = \rho(n_2, m_2)$ be congruences on C then

(i) $\sigma \lor \rho = (\min(n_1, n_2), \gcd(m_1, m_2))$

(ii) $\sigma \wedge p = (\max(n_1, n_2), \operatorname{lcm}(m_1, m_2)).$

As a consequence of Proposition 3 we have:

Proposition 4. Let σ , ρ , δ be congruences on a cyclic semigroup C. Then $\sigma \land (\rho \lor \delta) = (\sigma \land \rho) \lor (\sigma \land \delta)$.

Definition 2. Let S be a locally cyclic semigroup and σ a congruence on S. Then $\sigma_i = \sigma | S_i$ where $S = \bigcup_{i=1}^{n} S_i$ and S_i is a cyclic semigroup.

Since the representation of S is not unique, σ_i depends upon the S_i 's.

Proposition 5. Let S, σ be as defined above. Then

(i) σ_i is a congruence, $1 \le i \le \infty$

(iv) $\sigma = \tilde{\bigcup} \sigma_i$.

By $\lceil 3 \rceil$ we have the following two propositions.

Proposition 6. Let σ , ρ be congruences on a groupoid G. Then $\sigma \lor \rho = (\sigma \cup \rho)T$ where $T = \bigcup_{i=1}^{\infty} T_2^n$, $(\delta)T_2 = \delta \cup \delta^2$, $\delta T_2^n = ((\delta)T_2)T^{n-1}$, and " \cup " is the set union. (See [3].)

Proposition 7. Let $\delta \subseteq G \times G$ for some groupoid G, and a, $b \in G$. Then $a(\delta)$ Tb if and only if there exists $x_1, \dots, x_n \in G$ such that $a = x_1 \delta x_2, x_2 \delta x_3, \cdots, x_{n-1} \delta x_n = b.$

Proposition 8. Let S be a locally cyclic semigroup with congruences σ , δ and let $S = \bigcup_{i=1}^{\infty} S_i$, S_i a cyclic semigroup. Then

(i) $\sigma_i \vee \rho_i = (\sigma \vee \rho)_i$

(ii) $\sigma_i \wedge \rho_i = (\sigma \wedge \rho)_i$.

We will prove only (i) since the proof of (ii) is an obvious result of the definition of " \wedge ".

Clearly $\sigma_i \lor \rho_i \subseteq (\sigma \lor \rho)_i$; therefore assume $a, b \in S_i$ and $a(\sigma \lor \rho)_i b$ and $a \neq b$. Since $\sigma_i \lor \rho_i$ is symmetric without loss of generality assume a < b. By Proposition 6 $a(\sigma \lor \rho)Tb$ so by Proposition 7 there exists x_1, \dots, x_n such that $a = x_1(\sigma \vee \rho)x_2, \dots, x_{n-1}(\sigma \vee \rho)x_n = b$ with $x_j \in S_{ij}$, $1 \le j \le n$. Let $i \ast = \max [\{i_j\} \cup \{i\}]$. We have $x_1, \dots, x_n \in S_{i*}$ since $S_i \subseteq S_{i*}$ and $S_{ij} \subseteq S_{i*}$ $1 \le j \le n$, and $x_j (\sigma \lor \rho) x_{j+1}$ implies $x_j \sigma_{i*} x_{j+1}$ or $x_{i}\rho_{i*}x_{i+1}$. Let $\sigma_{i*} = \sigma_{i*}(\bar{n}*, \bar{m}*)$ and $\rho_{i*} = \rho_{i*}(n*, m*)$. Using (1) we have $\bar{m} * |x_j - x_{j+1}$ or $m * |x_j - x_{j+1}$ so $gcd(\bar{m} *, m *) |x_i - x_{i+1}$ giving us

(2)
$$\gcd(\bar{m}*, m*) | a-b$$
 since $a-b = \sum_{j=1}^{n} (x_j - x_{j+1})$.

Now since $a, b \in S_i, k \mid a-b$ where k generates S_i as a subsemigroup of S_{i*} . Therefore by (2) lcm $(k, \gcd(\bar{m}*, m*)) | a-b$. But $\operatorname{lcm}(k, \operatorname{gcd}(\bar{m}_{*}, m_{*})) = \operatorname{gcd}(\operatorname{lcm}(k, \bar{m}_{*}), \operatorname{lcm}(k, m_{*})) = \operatorname{gcd}(\bar{m}_{i}, m_{i})$ where $\sigma_i = (\bar{n}_i, \bar{m}_i)$ and $\rho_i = (n_i, m_i)$ by Proposition 2. This gives $gcd(\bar{m}_i, m_i) \mid a-b.$ (3)

By Proposition 2 and (1) either $\bar{n}_i - \bar{r} \le \bar{n}_{i*} - 1 < a$ or $n_i - r \le n_{i*} - 1 < a$ since $a \ne b$. Now $k \mid \bar{n}_i - \bar{r}, k \mid n_i - r$, and $k \mid a$ so $\bar{n}_i \le a$ or $n_i \le a$ since $1 \le \bar{r} \le k$ and $1 \le r \le k$ therefore (4) $\min(\bar{n}_i, n_i) \le a < b$.

From Proposition 3, $\sigma_i \vee \rho_i = (\min(\bar{n}_i, n_i), \operatorname{gcd}(\bar{m}_i, m_i))$ so (3) and (4) give us

5)
$$a(\sigma_i \lor \rho_i)b.$$

Therefore $(\sigma \lor \rho)_i \subseteq \sigma_i \lor \rho_i$ which gives

$$\sigma_i \lor \rho_i = (\sigma \lor \rho)_i$$
.

Now using Theorem 2 and Propositions 4, 5, and 8 we will give another proof for Theorem 1.

Theorem 1. Let S be a locally cyclic semigroup and S the lattice of congruences on S. Then S is a distributive lattice.

Let σ , ρ , $\delta \in S$. By Theorem 2 and Proposition 5, $S = \bigcup_{i=1}^{i} S_i$, $S_i \subseteq S_{i+1}$, S_i a cyclic semigroup $1 \le i < \infty$ and σ_i , ρ_i δ_i are all well defined congruences with respect to $\{S_i\}_{1 \le i < \infty}$ for $1 \le i < \infty$.

Therefore
$$\sigma \land (\rho \lor \delta) = \bigcup_{i=1}^{\omega} [\sigma \land (\rho \lor \delta)]_i = \bigcup_{i=1}^{\omega} [\sigma_i \land (\rho \lor \delta)_i]$$

by Prop. 5 by Prop. 8
 $= \bigcup_{i=1}^{\omega} [\sigma_i \land (\rho_i \lor \delta_i)] = \bigcup_{i=1}^{\omega} [(\sigma_i \land \rho_i) \lor (\sigma_i \land \delta_i)]$
by Prop. 8 by Prop. 4
 $= \bigcup_{i=1}^{\omega} [(\sigma \land \rho)_i \lor (\sigma \land \delta)_i] = \bigcup_{i=1}^{\omega} [(\sigma \land \rho) \lor (\sigma \land \delta)]_i$
by Prop. 8 by Prop. 8
 $= (\sigma \land \rho) \lor (\sigma \land \delta)$
by Prop. 5.

References

- [1] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups. I. Surveys 7, Amer. Math. Soc., Providence, R. I. (1961).
- [2] R. A. Dean and R. H. Oehmke: Idempotent semigroups with distributive right congruence lattices. Pacific J. Math., 14, 1187-1209 (1964).
- [3] T. Tamura: The theory of operations on binary relations. Tran. Amer Math. Soc., 120, 343-358 (1965).
- [4] T. Tamura and R. Levin: On locally cyclic semigroups. Proc. Japan Acad., 42, 376-379 (1966).
- [5] T. Tamura: Attainability of systems of identities on semigroups. Jour. of Alg., 3, 261-276 (1966).

(