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Department of Mathematics, Osaka Gakugei Daigaku
(Comm. by Kinjir6 KuNuGI, M.J.A., Feb. 18, 1967)

1. H. A. Dye has successfully investigated in detail the groups
of measure preserving transformations on a finite measure space in
his deep studies [3] and [4]. Among many others, Dye has intro-
duced the notion “equivalence” among these groups. In the present
note, we shall discuss his notion in connection with the crossed
product of an abelian von Neumann algebra.

2. Throughout the note, we shall use the terminology on von
Neumann algebras due to J. Dixmier [2] without further explana-
tions.

Following after Dye [3], we shall introduce some fundamental
definitions on automorphisms of an abelian von Neumann algebra
A with the faithful normal trace ¢ normalized by ¢(1)=1. A
projection P in A is said to be absolutely fixed under an auto-
morphism g of 4 if @=Q for each Q<P. For the given two
automorphisms ¢ and h of .4, we shall denote by F(g, k) the
maximal projection in ./ which is absolutely fixed under gh—'.

Let G be a group of automorphisms of .4 which is ¢-preserving
in the sense that ¢(A4%)=¢(A) for each Ae A and geG. If
F(g,1)=0 for each g#1 in G, then G is called freely acting.
If a is an automorphism of .J, we say that a depends on G if
Lu.b.,eq F(a, g)=1. We shall denote [G] by the collection of all
automorphisms of 4 which preserve ¢ and depend on G. Two
groups of G, and G, of ¢-preserving automorphisms of .4 will be
called equivalent, if they determine the same full group, that is,
[G1:|=|:G2].

3. At first we shall review briefly the concept of the crossed
product of an abelian von Neumann algebra .4 with the faithful
normal trace ¢ normalized with ¢(1)=1 by an enumerable freely
acting group G of ¢-preserving automorphisms of A4, cf. for in-
stance [5] and [6].

We shall denote an operator valued function defined on G by
Shee 9®A, where A,e A is the value of the function at gegG.
Let 9 be the set of all functions such that A,=0 up to a finite
subset of G. Then 9 is a linear space with the usual operations
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of the addition and the scalar multiplication, and becomes a *-algebra
by the following operations:

(3 904,) (S r0B)= 31 k@481
g€EG hEG 9.hEG
and
*
(Zo04) =5 o4
gEG 9€EG
For a trace ¢ in A, we can introduce a trace ¢ in 9 by
Ay,  for g=1,

#9®4,) {0 for g1,

and

(3 904,)= 3 0l0@4,).

Then the restriction of ¢ on A=1®] coincides with ¢ and ¢ is
faithful on 9, cf. [5]. Let 4 be the representation space of .1
by ¢ (cf. for instance [27]), then G®K, in the sense of H. Ume-
gaki [7], is the representation space of 9 by ¢, and 9 in repre-
sented faithfully on G®H. Put, for each Ae A and ge@G,
104(3} h®B,)= ST h®4B, and U3 h®B,)= 3 sh@Bi")
hEZF hEG hEG heaq
for any Sleq h®B, €9, being considered as a dense linear subset of
G®JI. Then U, is a unitary operator and we have
UX1®A)U,=1R A°.
Hereafter, we shall identify 1®.4 with ./ since { is isomorphic to
1®A.

The crossed product GR A of A by G (with respect to ¢) is the
weak closure of 9 on G®S, being considered 9 as a *-algebra of
operators on GRH.

4. In this section, we shall discuss automorphisms depending
on a group in connection with the decomposition of unitary operators
obtained in [1].

Let 4 and ¢ be as same as in §2, G be a countable freely
acting group of g¢-preserving automorphisms of 4 and a be an
automorphism of 4 which depends on G. Then, by [1; Theorem 1],
there exists a unitary operator V, in the crossed product G® A of
J by G (with respect to ¢) such that

V,,=§JE,U,, and V}AV,=A°

for any A€ A, where E, satisfies the following properties:
(1) E, is a projection in A for every geQ@,

(2) E,E,=0 for g+h,

(3) SheoB,=1,

(4) E, is absolutely fixed under ag™.

Furthermore, E, satisfies the following
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Lemma 1. E,=F(a,g) for any g€G.

Proof. We have at once E,<F(a,g) by (4). If E,#F(a,y),
then F'(a, g)E,+0 for some h+#g by (3). For each projection @ in
A such that Q< F(a, 9)E,, we have Q'=Q*=Q*. So F(a, 9)E, is
absolutely fixed under gh—', which is a contradiction. Therefore, E,
=F(a, g) as desired.

For V,, we have the following lemma:

Lemma 2. Let a and B be automorphisms of A which depend
on G, then

VoVe=V, and VFI=V..
That 1s, a—V,, is a representation of [G].
Proof. By Lemma 1, we have

V.=>F(a,9)U, and V,=3 F(8B,9)U,.
9€EG 9€G

Hence
Va VB: y%GF(a’ g)F(B, h)g—'l gh
(5) -1
. ( Y F(a, 9)F(B, hy™'U,,).
90€G \gh=g,

Now, we shall show
S Fle, )F (8, 5700 " =F(aB, 9)

for any g, G. For every projection @ which satisfies
Q=F(a, 9)F(B,97'9)" ",
we have Q*=Q’ and Q" =Q%, whence Q**=Q*=Q%, Hence
F(a, 9)F (B, 97'g.)° "< F(aB, 9,)
for any g, 9,€G. On the other hand, since G is freely acting, we
have
[F(a, 9)F (B, 97'9,)T 1[F(a, 9:)F (B, 9:'9,)% '] =0,
if g,#9,. Therefore, we have

3 Fla, 9)F (B, gy ‘s F(apB, g,),
for any g,eG. If
P=F(aB, 9)— ‘%F(a, NF (B, 97'9)97+#0,

for some g, G. Then there exists g, € G such that F(a, g,)P+0 since
Steq F(a, g)=1, and there exists g, € G such that F(B, g,): 'F(«, g,)P
#0 by

S8, )= S F 6 0 [* =1

Furthermore, for any projection dominated by F(B, g,)% ‘F(a, g,)P,
we have Qn=Q%f Q*=Q" and Q**=Q%. Hence, we have Q% =Q%%,
that is, the nonzero projection F'(B, g,)° ‘F'(a, g,)P is absolutely fixed
under g.g.9,)"'. By the assumption that G is freely acting, we have
d,=9.9., whence we have



114 H. CHODA [Vol. 43,

F(a, 9)F(B, 97'9,)% 'P+0,
which contradicts to the definition of P. Therefore P=0 and so
the assertion is proved. Thus, we have by (5)
Va Vﬁzgga F(a/gy go) Uao= Vaﬂo
0

The remainder half of the lemma is a consequence of a direct
calculation:
V=2 U}F(a,9)=> F(a, 9)°U;~=> F(a™, 9)U,=V, 1.
gECG geEG geEG

5. We shall give a characterization of the equivalence among
groups of automorphisms of an abelian von Neumann algebra in
terms of the crossed product:

Theorem 1. Let A be an abelian von Neumann algebra with
a mormalized faithful mormal trace ¢, and let G, and G, be two
countable freely acting groups of ¢-preserving automorphisms of
A. The necessary and sufficient condition that G, and G, are
equivalent is that there exists am isomorphism @ of the G,®A
onto G,® A which preserves J in elementwise im the sense
P(A)=A for any Ac A.

Proof. If G, and G, are equivalent, by the definition [G,]=[G,].
Then G,C[G,] and G,C[G,]. Therefore, for any g€ G,, the unitary
operator V,=>leq, F(9, W)U, of G,® is corresponding. Using V,,
we can define a linear mapping U’ on a dense set Q} of G,H into
GO by UgRA)=AV, and U(3}0.04,)=31 U'@:®4), for

i=1

9,0:€G, A, A;e J, where each element of 1 1s cons1dered as an
element of the canonical representation space 4 defined by ¢. The
following computation shows that U’ is an isometry:

(S eea)| =25 vee)
IEAV,,
I

= 51 o[ 3141 AF (g, OF @) ]

3 31 00 AF (g, 9)||

= 31 4|31 47 AF (g, g)]

ﬂeag i=1

= 2 Hard)

i=1

(because by the assumption that G is freely acting, F(g;, 9) is
orthogonal to F'(g;,g9) if i+j). Therefore U’ can be extended to
an isometric linear mapping U on G,®X into G,®4.
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Similarly, for k€ G,, there is a unitary operator in G,®A such

that
Vh= 2 F(gy h)Ua .
9€6G,
Putting
V(h@A=AV: and V(SIhOA)=3V(heA),

we have an isometric linear mapping V'’ on the dense set 9, of
G,®H into G,®H. Hence, again, we have the extension V of V'

which maps isometrically G,®4 into G,®4.
For these isometric transformations, we have

VU@®4) = V| 53 h®AF (@ 1)
= 2 9®AF(g,, W)F(g, h)

9€6,hEG,

=2 9.®AF (g, h)
nea,

:go®Ay
for any g¢,€G, and Ae . Hence VU=1 on G,® 4. Similarly
UV=1 on G,®4. Therefore, U is an isometric transformation of
G,®H onto G,®H and V is its inverse.

In the next place, for 377, A;U, € G,® A, we define a linear

mapping @' of G,® into G, A by

where
Vo,=2) F(g:, W)U,.
KEG,

Then by Lemma 2 @’ satisfies
'[(AU,)*]=[@'(AU,)]*
and
O'[(AU,)BU,)]=0'(AU,)®'(BU,),
for Ae /A and g, heG,. Furthermore, for Be A, ge G, and he@G,,
UAU,Uh®B)=, 3}  K®AF(k, WB)F(gk, k).

On the other hand, by the proof of Lemma 2, we have
F(gh, k’)=k2‘. F(k, k)""F(gk, k').
€6,

Hence we have
UAU,U-(h@B)= 5} ¥®ABF(gh, k)
= > Kh@ABF(gh, K'h)
=3 Wh@ABF(g, k)™
= > Kh@ABF (g™, k"))
=S Kh@AB T F(, K)

K Ee,

=AV,(h®B)=0(AU,)(h®B).
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Therefore, @' can be extended to a spatial isomorphism @ of G,®A
onto G,® A, and @ satisfies the required @®(A)=A for any Ae A by
the definition of @'.

Conversely, if there exists such an isomorphism @, then it is
automatically spatial on G,® 4 onto G,®.4. Since by [1; Theorem 1]
there exists a unitary operator U, in G,® A for any ac[G,], &(U,)
is a unitary operator in G,® 4. @(U,) induces an inner automor-
phism which coincides with @ on 4 by

Q(U)*AO(U,)=0(UXAU,)=0(A%)=A", for Ae .
Hence, by [1; Theorem 2], we have that a depends on G,, that is,
[G,]c[G,]. Symmetrically, we have also [G,]c[G,]. This com-
pletes the proof of Theorem 1.

An application of Theorem 1 will be discussed in the next note
with the characterization of “weak equivalence” of Dye in terms of
the crossed product of abelian von Neumann algebras.
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