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Notes on Generalized Commuting Properties
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1. Introduction. Let (M, Y,, m) be a measure space where M is
a set of elements, 27 a a-field of measurable subsets of M, and m a
countably additive measure on 27. An invertible measure-preserving
transformation T of the measure space (M,Z,m) is a one-to-one
mapping of M onto itself such that if B e 27 then TB and T-B e with
m(TB)-m(T-B)--m(B). Let (R) be the group of all invertible measure-
preserving transformations of (M, 27, m) with I denoting the identity
transformation on M. Associated with T e (R) is a sequence C(T),
n--0, 1, 2, ..., of subfamilies of (R) defined inductively as follows"

Co(T)-{S e (R)IS-I a.e.},
Cn(T)-(S e (R) STS-T- e Cn_I(T)).

It is clear that Cn(T)Cn/(T) for each n. If there exists an integer
N such that Cv(T)-Cv/(T) then C(T)--Cv(T) for all n>=N. R.L.
Adler [1] called C(T) the nth class of generalized T-commuting trans-
formations and defined the generalized commuting order N(T) of. T as
follows"

min (nlC(T)-Cn/(T)} if there exists an integer N such
N(T)-- that Cv(T)-Cv+(T),

c if Cn(T)=/=C/(T) for each n.
Let H be the two-dimensional torus, i.e., H--KK, where K

(exp[2uit] 0 t__< 1}, equipped with the normalized Haar measure
and let T, denote the invertible measure-preserving transformation
on H which is defined by

Tr,," (x, y)---(x’, y. x)
where " is an element of K such that :/: 1 or every n:/=0 and/ a
non-zero integer. In [1], Adler asserted and proved the act that
N(Tr,)-2. However I could not follow his proof. In this paper we
shall assert and prove that N(T,)-3. The method o the proof de-
pends upon Adler’s idea in [1].

2. Preliminaries. Let X be a half open unit interval (0,1]
equipped with the usual topology. Since X is homeomorphic to the
circle group K by the mapping p of X onto K which is defined by p(x)
-exp[2zcix], we may consider X as the circle group equipped with the
normalized Haar measure. Let H--XX be the topological product
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group of X and X equipped with the normalized Haar measure . We
shall consider the following skew product measure-preserving trans-
formation defined on H. Let T, denote the measure-preserving
transformation with -function which is defined by Tr," (x, y)(x / ,
y/(x)) (additions modulo 1) where is an irrational number and
(.) a real-valued measurable function on X. Conditions for ergodi-
city of T, along with the proof that it is measure-preserving can be
found in H. Anzai’s paper [2]. Furthermore, two other results from
[2] upon which the subsequent work depends are the following.

Proper value criterion. The value exp[2i] is a proper value of
Tr, if and only if there exists an integer p and a real-valued measur-
able function (.) on X such that--p(x) t?(x + )-- (x) (modulo 1) a.e.

Spatial isomorphism criterion. If S is an invertible measure-
preserving transformation such that ST,S--T, a.e. where T, and
Tr, are ergodic skew product transformations with -function and -function, respectively, then S has either the form

S" (x, y)(x+ u, y+ (x))
(additions modulo 1) where u is a real constant and (.) a real-valued
measurable function on X such that

tg(x+u)--(x)-t?(x+)-t?(x) (modulo l) a.e.
or

S" (x, y)--(x + u, y + t?(x))
(additions modulo 1) where u and t?(.) now satisfy

fl(x + u) + a(x)- t?(x + y)-- t?(x) (molulo 1) a.e.
:. Generalized commuting properties. Let y be an irrational

number and a(.) denote a real-valued measurable function on X of the
form a" xfx+ where/ is a non-zero integer and a real constant.
We shall restrict ourselves to the skew product transformation T,.
with the above a-function.

Theorem. The generalized commuting order N(Tr,)=3. Fur-
thermore Co(Tr,), CI(Tr,.), C2(T,.), and C3(Tr,) are subgroups of the
group (R) of all invertible measure-preserving transformations of
(H, , ) where is the a-field of all -measurable subsets of H.

The theorem is established in a sequence of propositions.
Lemma. If T is the invertible measure-preserving transforma-

tion on H which is defined by T" (x, y)-(x+y, y+ lx+) (additions
modulo 1) where y is an irrational number, l a non-zero integer, and

a real constant, then T is totally ergodic and has quasi-discrete
spectrum of order 2.

The proof is not difficult, whence we omit it here (refer to [3]).
Proposition 1. S e CI(Tr,.), i.e., STr,.=Tr,.S a.e. if and only if S
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almost everywhere is of the form
S" (x, y)- (x+ m+q y+mx +c)

(additions modulo 1) where m is an integer, q-O, 1, 2,..., or /1--1,
and c a real constant.

The proof is analogous to that of [1, Proposition 1, p. 9], whence
we omit the details.

Let S be an invertible measure-preserving transformation on H
such that S-- Tr,. a.e. Then S commutes with T,, and so it almost
everywhere must have the form

S" (x, y)- (x + m +--q y+mx+ c)
(additions modulo 1), whence S" almost everywhere is o the form

s’. v)--, + mr, v + + + 1]m[mr + q] (additions mo-

dulo 1). This together with S=T, implies mr=r (modulo 1), whence
m=l. Thus

1
/c + -(/- 1)(y + q)- (modulo 1)

Joe.
c=[2+(1--/D(+q)+2q’]/2[ (modulo 1) (1)

where q’= 0, 1, 2, ., or I/ 1. Conversely if S almost everywhere

is of the form S" (x, y) (x + + q, y+ x+ cl (additions modulo 1)
/

where c is defined by (1), then S"= Tr, a.e.
Now it is easy to see that if S is a/th root of T, then the family

of the transformations almost everywhere equal to one of the forms

S’,R where n is an integer and R" (x, y) (x + q, y+ el in which q-- 0,
/

1, 2, ..., or I/l--1 and c a real constant coincides with CI(Tr,).
Proposition 2. S e C(Tr,) if and only if S almost everywhere is

of the form
S (x, y)--(x + u, y + tx + c)

(additions modulo 1) where =1 or --1, k is an integer, and c a real
constant.

Proof. Let S e C(T,.). Then ST,S-T: e C(T,.), whence
--I --I

where U is a/th root of T.,. and R" (x, y)- (x + q, y+ dl (additions
/

modulo 1). Therefore
ST,S-=U+"R a.e.

The transformation on the right is the ergodic skew product trans-



No. 5] Skew Product Transformations 371

formation T (n+/)y+q, with -function which has the form ’x
[n+/]x -d’ in which all the constants involved are lumped together
in d’. Here we note that n// :/:0. This follows from the ergodicity

of T (n//)y / q,/9. By the proper value criterion exp[2i$] is a prop-

er value of Tr, if and only if there exists an integer p and a real-
valued measurable function t?(.) on X such that--p(lx + ) O(x + ’)-- O(x) (modulo 1) a.e.
This implies that exp[2it?(.)] is a generalized proper function of

T" xx+ (modulo 1) on X, whence the same argument as in the
proof of [1, Proposition 1, p. 9] demonstrates that exp[27it?(x)]
--exp[2ri(mx + c)] a.e. for some integer m and real constant c. Thus
--p(/x+)--m (modulo 1) a.e. and so p-0. It follows that
{exp[27im]lm is an integer} is the proper values of T,. The same

argument as the above implies that {exp[27im. (n+/)+q]lm is an

integerl is the proper values of T (n +/)y + q, ft. Since Tr, and

T (n+f)T+q, fl are spatially isomorphic the proper values of Tr,

coincide with the proper values of T (n +/)y + q,/9 from which it fol-

lows that
q=0, and (n+/D//=l or --1.

Let (n +/)// 1, i.e., n-0. Then STr,S- almost everywhere is
of the form

STr,S-1" (x, y)(x + , y+x+ d’)
(additions modulo 1). By the spatially isomorphism criterion S almost
everywhere is of the form

( i S" (x, y)(x+ u, y + (x))
(additions modulo 1) where

/(x + u) + d’-- (x+) t?(x + y)-- t?(x) (modulo 1) a.e.
or

(ii) S" (x, y)(x+ u, y + O(x))
(additions modulo 1) where

[(x+u)+d’+(/x+)=(x+)-t?(x) (modulo 1) a.e.
In either case the argument of generalized proper unctions as-

sures that O(x)-kx+c (modulo 1) a.e. or some integer k and real
constant c, from which it follows that case (ii) is impossible.

Next let (n+/)//=-l, i.e., n=--2/. Then ST,,S- almost
everywhere is o the form

ST,,,S-1" (x, y)--(x- , y-x+ d’)
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(additions modulo 1). If Q denote the transformation on H which is
defined by (x, y)-.(-x,-y) then QST,S-Q- almost everywhere is of
the form

QST,S-Q- (x, y)--(x + , y-ttx-d’)
(additions modulo 1). Therefore the spatial isomorphism criterion
can be applied to QS and we see that QS almost everywhere is of the
orm

(iii) QS (x, y)--(x + u, y + O(x))
(additions modulo 1) where -/(x+u)- d’- (/x +) t?(x + )-- t?(x)
(modulo 1) a.e. or

(iv) QS :(x, y)-(x+ u, y + (x))
(additions modulo 1) where -/(x +u)-
(modulo 1) a.e.

The same argument used in the case (n//)//=1 demonstrates
that case (iii) is impossible and that in case (iv) QS almost everywhere
is of the form QS (x, y)(x+ u, y + kx + c) (additions modulo 1),
whence S almost everywhere is of the form S: (x, y)-(-x-u, y-kx
--c) (additions modulo 1).

Conversely if S almost everywhere is of the form

S (x, y)-,(x + u, y + kx + c)
(additions modulo 1) then STr,S T, almost everywhere is of the
form

ST,S-Tr:] (x, y)--(x + [e- 1]’, y + [e-- 1]/x + c’)
(additions modulo 1). Proposition 1 implies now S e C2(T,). This
completes the proof.

Proposition :. S e C3(Tr,,) if and only if S almost everywhere is

of the form
S (x, y)-(x+ u, 2Y+ kx + c)

(additions modulo 1) where e and equal 1 or -1, respectively, k is
an integer, u and c are real constants.

It is easily seen that the same argument used in the proof of
Proposition 2 can be applied in order to prove Proposition 3. Thus
we omit the proof here.

Proposition 4. C(T,)=C(T,), i.e., N(T,)=3.
Proof. Let S e C(T,). Then S3=ST,S-Tr: almost everywhere

is of the form S: (x,y)--.(ex+u, e2y+kx+d) (additions modulo 1),
whence STr,S-=S3T, almost everywhere is of the form

STr,.S- (x, y)o(ex + u, ey + kx+ d)
(additions modulo 1)where k is some integer and u, d real constants.
Thus STr,.S- almost everywhere is of the form

ST,,S-" (x, y)-(x +[+ 1]u, y +[+]kx+
(additions modulo 1) where d is some real constant. Since T,, is to-
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tally ergodic and has quasi-discrete spectrum of order 2, it ollows
that e+l=/:0 and +:/:0, in other words, s=e=l. This together
with Proposition 2 implies now that S-ST,S-T-:, belongs to C(Tr,).
Therefore S belongs to C(Tr,). This completes the proof.

Remark. Let (M, 27, m) be a non-atomic Lebesgue space (see [4])
with re(M)= 1. Then it is known that if T e (R) is totally ergodic and
has quasi-discrete spectrum of order 1 then N(T)=2 (see [1]). How-
ever I do not know whether if T e (R) is totally ergodic and has quasi-
discrete spectrum of order 2 then N(T)= 3.
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