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115. On the Schur Index of a Monomial Representation

By Toshihiko YAMADA
Department of Mathematics, Tokyo Metropolitan University

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1969)

In this note we give a method of determing the Schur index of a
monomial representation of a finite group which is induced from a
linear character of its normal subgroup. At the same time we obtain
some other results which are useful in the theory of Schur index.

Notation and Terminology. G denotes a finite group whose unit
element is 1. |G| is the order of G- K is any given field of characteristic
0 and 2 the algebraic closure of K. An irreducible character y of G
always means an absolute one afforded by a representation of the
group algebra QG over 2. mg(y) is the Schur index of y over K. K(y)
is the field obtained from K by adjunction of all values y(g), g € G.
G(K(y)/K) is the Galois group of K(y) over K. For e &(K(y)/K), x*
is the character of G defined by x*(9)=x(9)". e(x)= |G| 'y (1) ZGx(g‘l)g

ge

is the minimal central idempotent of QG corresponding to yx. a(y)
= >, e(y) is the identity of the simple component A of KG with

r€@E )/K)

the (f)roperty x(A)=+01[2,V, 14.12]. If H is a subgroup of G and +a
character of H, ¢ denotes the character of G induced from .. For a
ring R and an integer n, R, is the total matric algebra of degree n
over K.

Lemma. Let H be a subgroup of G and Hg,, ---, Hg, all the
distinct right cosets of H in G. Let + be an irreducible character of H
such that ¢ is irreducible. For simplicity, set e,=g;'e(y)g, (i=1, - - .

«+.,n). Thenwe have (i) e (\pG)zﬁei, (1) e(PNRG=¢,2G+ - - - +¢€,2G,
(iii) ee;=0 (i#7), ee;=e;, 14, j<n, (iv) W)= for any 7€ ®
(K()/ K).

Proof. () e(y9)=|G["¢ (D) z:'_é Y9 9= H[ ¥ (1) ;}

2997909 =2, 0| H[™ @) 2, w(R™DhYg:=2 s,
where y(9)=0 for g ¢ H. (ii) It can be easily seen that e(4)2G ~¢,2G
(=1, ---, n) as right 2G-modules and that dim,e(y)2G=n (1)* and
that e(v9)RG C ,2G + -+ - + e,2G. Hence, (n ¢ (1)) =dim,e(+$)Q2G
<dim,{e,2G+ - - - +e,2G}<n*y (1)?. This proves (ii). (iii) We observe
that e,=e(y%e;=ee;+ -+ - +e,e,+ -+ - +e,e,. Since e, QG+ --- +¢,0G is
a direct sum, it follows that e;e,=0 (i+£7), e;e;=e;.
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(iv) («!f’)a(g)=§xlf’(gjgg;1)= {ji«k(gjgg;l)}rz(\!r")’(g), geq.

Theorem 1. Let H be a subgroup of G whose index in G is n.
Let + be an irreducible character of H such that the induced character
¢ is irreducible. Assume that K(y)=K(%). If the simple component
a(y)KH of KH is isomorphic to D, for a division algebra D over K and
for an integer r, then the simple component a(v4)KG of KG is isomor-
phic to D,,. In particular, miz(\%) =mzi@)).

Proof. Let Hyg,, ---, Hg, (9,=1) be all the distinct right cosets
of Hin G. From Lemma and the assumption K() =K%, it follows

that aW9)= 5 dM= 3 () =3 3 0=,

e @E W) /K) e @K (/K T 0= i=
g7'a(y)g,;. By Lemma, g;*e(¥)g;-97'e()g;=0(#7). Ifr, 7" e G(KG)
| K), t#7/, then (4)¢= ()%, and so e((Yy))RG - e((y)9)R2G=0. Hence,
g7'e(¥)g:-95'e(y)g;,=0. Thus, gi‘la(w)gi-ggla(«k)gFtZ{,g;‘e(«!f’)gi~g;‘

e(v)g,;=0, and so g;'a(v)KHg,- 97'a(y)KHg,=0(i#j7). Let 0 € a(y)KH
be an idempotent of KH such that 0KH is an irreducible right KH-
module. Then the ring of KH-endomorphisms of 6KH is isomorphic to
the division algebra 6 KHd, which is anti-isomorphic to D. Denote by
ZF the ring of KG-endomorphisms of the right KG-module 0KG. For
Eec8,8(2)=£6(02)=£(0)2,2<c 0KG,where £(0) ¢ 0KG. Henceforé&,&' c &,

&=¢&’if and onlyif £(6) =&7(0). Meanwhile, if £(0)= :V‘_,ﬁsigi,si e KH,then

EW0)=E(0)=E(0)0= }n_] 08,9,0= nZ, g::97208,9,-0=08,0 ¢ 0KHO, because

97089, € 9:'a(y)KHg,, 0 € a(y)KH, and g;'a(v)KHg, - a(y)KH =0 (i+1).
It follows readily that the ring 5 is isomorphic to the division algebra
0KH§, so that 0KG is an irreducible right KG-module contained in
a(y)KG. From the fact that g;'a(y)g, (i=1, ..., n) are orthogonal

idempotents and a(«J/G)zf_: gta()g,, it follows easily that a(v“)KG
=1

=g7'a()9,KG + - - - + g7;'a(y)9,KG. Hence a(y*)KG contains 0KG
whose KG-endomorphism ring is anti-isomorphic to D. So we have
a(yHKG=D, for some integer x. As g¢;'a(y)g;KG is isomorphic to
a(y)KG as right KG-modules and dimga(y)KG = n-dimza(y)KH
=n.dimzD,=nr¥D: K), we have dimza(y)KG=n*r*D:K). Thus,
a(vHKG=D,,.

Theorem 2. Let H be a normal subgroup of G and  a linear
character of H such that ¥ is irreducible. Set F={ge G;\y'="®
for some 7(9) ¢ &(K(W)/K)}, where ¥ is defined by (h)=+(ghg™,
heH. LetHf,, ---, Hf, be all the distinct cosets of H in F, and f.f;
=hi;foag Rije H. Set ©(f) =1, and B(t;, v) =(h;y), 1<4, < n.
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Then we have () F/H={t,, - - -, T,}=&EN ) /K T)), (i) B is a factor
set of S(K(r)/K(F)) consisting of roots of unity and the simple algebra
a(yT)KF is isomorphic to the crossed product (8(z;, t,), K()/K{T)),
(iii) meg(P)=me(F). In fact, if a(YyF)KF =D, for a division algebra
over K and for an integer r, then a(v¢)KG~D,,, t=(G: F).

Proof. As 7 is irreducible, ¥/ =+ if and only if fe H. So the
mapping: fi>z(f), fe F is a homomorphism from F into &K(®)r)/K)
whose kernel is H. Hence F/H~{z,, ---, 7,}. Forany feF, (y¥)i(f)

=S I = S =3 (), and so (P =T G=1, -+, .

Conversely, if ¢F =) =")" for some 7 ¢ &(K(y)/K), there exists
feF such that =+ [1,45.6]. Hence 7 is in {r,, ---, 7,}. There-
fore, &(K()/K(WF)=~{ry, - --,7,}. Remark that K(y) D K(T)DK(W9).
If ¢C=@yr=")¢ for v e &K()/K), there exists g e G such that
Y?=+°. Hence g ¢ F and 7 € &(K()/K{)). This shows that K(*)
=K(-¢). Then the assertion (iii) is an immediate consequence of
Theorem 1. If U is the matrix representation of F' with the character
¥vF, a($F)KF 1is isomorphic to the enveloping algebra enviU
={,§van(f); aye K} of Uover K. For heH, U(h) is the diagonal

matrix [*(h), - - -, (k)] with the diagonal elements “(k), - - -, ¥"»(h),
and so env U’ ={[0", ---, 07]; 0 ¢ K(4)}=~K(y), where U’ denotes the

restriction of U to H. It is easily seen that env U= Xn; env U'-U(f)
=1

and that the mapping 7,: T—U(f)TU(f)™!, T e env(U’) is the auto-
morphism of the field env U’ corresponding to 7, ¢ &(K(y)/K(+F)) and
that {Z,, - - -, 7,,} is the Galois group of the extension env U’/ K(")-1,, 1,
being the identity of 2,. Now it is well known that K(y¥)-1, is the
center of env U and (env U : K(%)-1,)=n% Thus, we have the expres-

sion of env, U as crossed product: env,(U)= i‘, env U -U(f)= (B(‘?m% s
i=1

envyU'/|K(¥).1,) with relations U(fi)TU(fi)‘lzT?i, T ecenv,U’,
UfDUD=UhDU(fru. 1)y BFi T)=U(hyy), 1<i, j<n. Clearly, this
crossed product is isomorphic to the crossed product (8(z;, 7,), K(y)
[ K@),

As for the crossed product A=(j(z;, 7,;), K(4)/K(*)) in Theorem
2, we recall that if K is a finite extension of the rational p-adic number
field @, for a prime p, then the P-invariant of A equals p-(K("):
Q,(¥")) where p is the p-invariant of B=(B(c;, 7,), Q,(¥)/Q,(¥").
Here 8 and p are the prime ideals of K(y¥) and Q,(y*) respectively,
that divide p. Now B is a ‘“Kreisalgebra” and its p-invariant was
calculated by Witt [3].
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