115. On the Schur Index of a Monomial Representation

By Toshihiko YAMADA

Department of Mathematics, Tokyo Metropolitan University (Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1969)

In this note we give a method of determing the Schur index of a monomial representation of a finite group which is induced from a linear character of its normal subgroup. At the same time we obtain some other results which are useful in the theory of Schur index.

Notation and Terminology. G denotes a finite group whose unit element is 1. |G| is the order of G. K is any given field of characteristic 0 and Ω the algebraic closure of K. An irreducible character χ of G always means an absolute one afforded by a representation of the group algebra ΩG over Ω . $m_K(\chi)$ is the Schur index of χ over K. $K(\chi)$ is the field obtained from K by adjunction of all values $\chi(g)$, $g \in G$. $\mathfrak{G}(K(\chi)/K)$ is the Galois group of $K(\chi)$ over K. For $\tau \in \mathfrak{G}(K(\chi)/K)$, χ^{τ} is the character of G defined by $\chi^{\tau}(g) = \chi(g)^{\tau}$. $e(\chi) = |G|^{-1}\chi$ (1) $\sum_{g \in G} \chi(g^{-1})g$ is the minimal central idempotent of ΩG corresponding to χ . $a(\chi) = \sum_{\tau \in \mathfrak{G}(K(\chi)/K)} e(\chi^{\tau})$ is the identity of the simple component A of KG with the property $\chi(A) \neq 0$ [2, V, 14. 12]. If H is a subgroup of G and ψ a character of H, ψ^G denotes the character of G induced from ψ . For a ring G and an integer G0, G1, G2 is the total matric algebra of degree G1.

Lemma. Let H be a subgroup of G and Hg_1, \dots, Hg_n all the distinct right cosets of H in G. Let ψ be an irreducible character of H such that ψ^G is irreducible. For simplicity, set $e_i = g_i^{-1}e(\psi)g_i$ ($i = 1, \dots, n$). Then we have (i) $e(\psi^G) = \sum_{i=1}^n e_i$, (ii) $e(\psi^G)\Omega G = e_1\Omega G + \dots + e_n\Omega G$,

(iii) $e_i e_j = 0$ $(i \neq j)$, $e_i e_i = e_i$, $1 \leq i$, $j \leq n$, (iv) $(\psi^{\mathfrak{r}})^G = (\psi^G)^{\mathfrak{r}}$ for any $\tau \in \mathfrak{G}(K(\psi)/K)$.

Proof. (i)
$$e(\psi^G) = |G|^{-1} \psi^G$$
 (1) $\sum_{g \in G} \psi^G(g^{-1}) g = |H|^{-1} \psi$ (1) $\sum_{g \in G} \psi^G(g^{-1}) g = |H|^{-1} \psi^G(g^{-1}) g = |H|^$

$$\textstyle \sum_{i=1}^n \psi(g_ig^{-1}g_i^{-1})g = \sum_{i=1}^n g_i^{-1} \{\, |\, H|^{-1}\psi \ (1) \sum_{h \in H} \psi(h^{-1})h \}g_i = \sum_{i=1}^n e_i,$$

where $\psi(g)=0$ for $g \notin H$. (ii) It can be easily seen that $e(\psi)\Omega G \simeq e_i\Omega G$ $(i=1,\cdots,n)$ as right ΩG -modules and that $\dim_{\mathcal{G}} e(\psi)\Omega G = n \ \psi(1)^2$ and that $e(\psi^G)\Omega G \subset e_1\Omega G + \cdots + e_n\Omega G$. Hence, $(n \ \psi \ (1))^2 = \dim_{\mathcal{G}} e(\psi^G)\Omega G \leq \dim_{\mathcal{G}} \{e_1\Omega G + \cdots + e_n\Omega G\} \leq n^2 \psi \ (1)^2$. This proves (ii). (iii) We observe that $e_i = e(\psi^G)e_i = e_1e_i + \cdots + e_ie_i + \cdots + e_ne_i$. Since $e_1\Omega G + \cdots + e_n\Omega G$ is a direct sum, it follows that $e_ie_j = 0$ $(i \neq j)$, $e_ie_j = e_i$.

$$\text{(iv)} \quad (\psi^{\scriptscriptstyle \mathsf{T}})^{\scriptscriptstyle G}(g) \! = \! \sum_{i=1}^n \! \psi^{\scriptscriptstyle \mathsf{T}}(g_{\,{}_{\!J}} g g_{\,{}_{\!J}}^{-1}) \! = \! \left\{ \! \sum_{i=1}^n \! \psi(g_{\,{}_{\!J}} g g_{\,{}_{\!J}}^{-1}) \! \right\}^{\scriptscriptstyle \mathsf{T}} \! = \! (\psi^{\scriptscriptstyle G})^{\scriptscriptstyle \mathsf{T}}\!(g), \, g \in G.$$

Theorem 1. Let H be a subgroup of G whose index in G is n. Let ψ be an irreducible character of H such that the induced character ψ^G is irreducible. Assume that $K(\psi) = K(\psi^G)$. If the simple component $a(\psi)KH$ of KH is isomorphic to D_r for a division algebra D over K and for an integer r, then the simple component $a(\psi^G)KG$ of KG is isomorphic to D_{rn} . In particular, $m_K(\psi^G) = m_K(\psi)$.

Proof. Let Hg_1, \dots, Hg_n $(g_1=1)$ be all the distinct right cosets of H in G. From Lemma and the assumption $K(\psi)=K(\psi^G)$, it follows

that $a(\psi^G) = \sum_{\tau \in \mathfrak{V}(K(\phi^G)/K)} e((\psi^G)^{\tau}) = \sum_{\tau \in \mathfrak{V}(K(\phi)/K)} e((\psi^{\tau})^G) = \sum_{\tau} \sum_{i=1}^n g_i^{-1} e(\psi^{\tau}) g_i = \sum_{i=1}^n g_$ $g_i^{-1}a(\psi)g_i$. By Lemma, $g_i^{-1}e(\psi^{\tau})g_i\cdot g_i^{-1}e(\psi^{\tau})g_j=0$ $(i\neq j)$. If $\tau,\tau'\in \mathfrak{G}(K(\psi^G))$ /K), $\tau \neq \tau'$, then $(\psi^{\tau})^G \neq (\psi^{\tau'})^G$, and so $e((\psi^{\tau})^G)\Omega G \cdot e((\psi^{\tau'})^G)\Omega G = 0$. Hence, $g_i^{-1}e(\psi^{\mathfrak{r}})g_i\cdot g_j^{-1}e(\psi^{\mathfrak{r}'})g_j = 0.$ Thus, $g_i^{-1}a(\psi)g_i\cdot g_j^{-1}a(\psi)g_j = \sum_{\mathfrak{r},\mathfrak{r}'}g_i^{-1}e(\psi^{\mathfrak{r}})g_i\cdot g_j^{-1}$ $e(\psi^{\tau})g_i=0$, and so $g_i^{-1}a(\psi)KHg_i\cdot g_i^{-1}a(\psi)KHg_i=0$ $(i\neq j)$. Let $\delta\in a(\psi)KH$ be an idempotent of KH such that δKH is an irreducible right KHmodule. Then the ring of KH-endomorphisms of δKH is isomorphic to the division algebra $\delta KH\delta$, which is anti-isomorphic to D. Ξ the ring of KG-endomorphisms of the right KG-module δ KG. $\xi \in \mathcal{Z}, \xi(z) = \xi(\delta z) = \xi(\delta)z, z \in \delta KG$, where $\xi(\delta) \in \delta KG$. Hence for $\xi, \xi' \in \mathcal{Z}$, $\xi = \xi'$ if and only if $\xi(\delta) = \xi'(\delta)$. Meanwhile, if $\xi(\delta) = \sum_{i=1}^{n} \delta s_i g_i$, $s_i \in KH$, then $\xi(\delta) = \xi(\delta^2) = \xi(\delta)\delta = \sum_{i=1}^n \delta s_i g_i \delta = \sum_{i=1}^n g_i \cdot g_i^{-1} \delta s_i g_i \cdot \delta = \delta s_1 \delta \in \delta KH \delta$, because $g_i^{-1}\delta s_i g_i \in g_i^{-1}a(\psi)KHg_i, \delta \in a(\psi)KH, \text{ and } g_i^{-1}a(\psi)KHg_i \cdot a(\psi)KH = 0 \ (i \neq 1).$ It follows readily that the ring \mathcal{E} is isomorphic to the division algebra $\delta KH\delta$, so that δKG is an irreducible right KG-module contained in From the fact that $g_i^{-1}a(\psi)g_i$ ($i=1, \dots, n$) are orthogonal idempotents and $a(\psi^G) = \sum_{i=1}^n g_i^{-1} a(\psi) g_i$, it follows easily that $a(\psi^G) KG$ $=g_1^{-1}a(\psi)g_1KG+\cdots+g_n^{-1}a(\psi)g_nKG$. Hence $a(\psi^G)KG$ contains δKG whose KG-endomorphism ring is anti-isomorphic to D. So we have $a(\psi^G)KG \simeq D_x$ for some integer x. As $g_i^{-1}a(\psi)g_iKG$ is isomorphic to $a(\psi)KG$ as right KG-modules and $\dim_K a(\psi)KG = n \cdot \dim_K a(\psi)KH$ $= n \cdot \dim_K D_r = nr^2(D:K)$, we have $\dim_K a(\psi^G)KG = n^2r^2(D:K)$. $a(\psi^G)KG \simeq D_{rn}$.

Theorem 2. Let H be a normal subgroup of G and ψ a linear character of H such that ψ^G is irreducible. Set $F = \{g \in G; \psi^g = \psi^{\tau(g)} \text{ for some } \tau(g) \in \mathfrak{G}(K(\psi)/K)\}$, where ψ^g is defined by $\psi^g(h) = \psi(ghg^{-1})$, $h \in H$. Let Hf_1, \dots, Hf_n be all the distinct cosets of H in F, and $f_if_j = h_{ij}f_{\nu(i,j)}$, $h_{ij} \in H$. Set $\tau(f_i) = \tau_i$ and $\beta(\tau_i, \tau_j) = \psi(h_{ij})$, $1 \leq i, j \leq n$.

Then we have (i) $F/H \cong \{\tau_1, \dots, \tau_n\} \cong \mathfrak{G}(K(\psi)/K(\psi^F))$, (ii) β is a factor set of $\mathfrak{G}(K(\psi)/K(\psi^F))$ consisting of roots of unity and the simple algebra $a(\psi^F)KF$ is isomorphic to the crossed product $(\beta(\tau_i, \tau_j), K(\psi)/K(\psi^F))$, (iii) $m_K(\psi^G) = m_K(\psi^F)$. In fact, if $a(\psi^F)KF \cong D_r$ for a division algebra over K and for an integer r, then $a(\psi^G)KG \cong D_{rt}$, t = (G:F).

Proof. As ψ^F is irreducible, $\psi^f = \psi$ if and only if $f \in H$. mapping: $f \mapsto \tau(f)$, $f \in F$ is a homomorphism from F into $\mathfrak{G}(K(\psi)/K)$ whose kernel is H. Hence $F/H \simeq \{\tau_1, \dots, \tau_n\}$. For any $f \in F$, $(\psi^F)^{\tau_i}(f)$ $= \sum_{i=1}^{n} \psi(f_{j} f f_{j}^{-1})^{\tau_{i}} = \sum_{i=1}^{n} \psi^{\tau_{j} \tau_{i}}(f) = \psi^{F}(f), \text{ and so } (\psi^{F})^{\tau_{i}} = \psi^{F} (i = 1, \dots, n).$ Conversely, if $\psi^F = (\psi^F)^\tau = (\psi^\tau)^F$ for some $\tau \in \mathfrak{G}(K(\psi)/K)$, there exists $f \in F$ such that $\psi^{\tau} = \psi^{f}$ [1, 45.6]. Hence τ is in $\{\tau_{1}, \dots, \tau_{n}\}$. Therefore, $\mathfrak{G}(K(\psi)/K(\psi^F)) \simeq \{\tau_1, \dots, \tau_n\}$. Remark that $K(\psi) \supset K(\psi^F) \supset K(\psi^G)$. If $\psi^G = (\psi^G)^\tau = (\psi^\tau)^G$ for $\tau \in \mathfrak{G}(K(\psi)/K)$, there exists $g \in G$ such that $\psi^g = \psi^\tau$. Hence $g \in F$ and $\tau \in \mathfrak{G}(K(\psi)/K(\psi^F))$. This shows that $K(\psi^F)$ $=K(\psi^G)$. Then the assertion (iii) is an immediate consequence of Theorem 1. If U is the matrix representation of F with the character ψ^F , $a(\psi^F)KF$ is isomorphic to the enveloping algebra env_KU $=\{\sum_{f\in F} \alpha_f U(f); \alpha_f \in K\}$ of U over K. For $h \in H$, U(h) is the diagonal matrix $[\psi^{\mathfrak{r}_1}(h), \dots, \psi^{\mathfrak{r}_n}(h)]$ with the diagonal elements $\psi^{\mathfrak{r}_1}(h), \dots, \psi^{\mathfrak{r}_n}(h)$, and so $\operatorname{env}_K U' = \{ [\theta^{r_1}, \dots, \theta^{r_n}]; \theta \in K(\psi) \} \simeq K(\psi), \text{ where } U' \text{ denotes the } \theta$ restriction of U to H. It is easily seen that env $U = \sum_{i=1}^{n} \operatorname{env} U' \cdot U(f_i)$ and that the mapping $\tilde{\tau}_i: T \mapsto U(f_i)TU(f_i)^{-1}$, $T \in \text{env}(U')$ is the automorphism of the field env U' corresponding to $\tau_i \in \mathfrak{G}(K(\psi)/K(\psi^F))$ and that $\{\tilde{\tau}_1, \dots, \tilde{\tau}_n\}$ is the Galois group of the extension env $U'/K(\psi^F) \cdot 1_n$, 1_n being the identity of Ω_n . Now it is well known that $K(\psi^F) \cdot 1_n$ is the center of env U and (env $U: K(\psi^F) \cdot 1_n = n^2$. Thus, we have the expres- $\text{sion of env}_{\scriptscriptstyle{K}}U \text{ as crossed product: env}_{\scriptscriptstyle{K}}(U) = \sum_{i=1}^{n} \text{env}_{\scriptscriptstyle{K}}U' \cdot U(f_{i}) = (\tilde{\beta}(\tilde{\tau}_{i}, \tilde{\tau}_{j}), \tilde{\beta}(\tilde{\tau}_{i}, \tilde{\tau}_{j}), \tilde{\beta}(\tilde{\tau}_{i},$ $\operatorname{env}_{\kappa}U'/K(\psi^F)\cdot 1_n$ with relations $U(f_i)TU(f_i)^{-1}=T^{\tilde{\epsilon}_i}, T\in \operatorname{env}_{\kappa}U',$ $U(f_i)U(f_j)=U(h_{ij})U(f_{\nu(i,j)}), \ \tilde{\beta}(\tilde{\tau}_i, \tilde{\tau}_j)=U(h_{ij}), \ 1\leq i, j\leq n.$ Clearly, this crossed product is isomorphic to the crossed product $(\beta(\tau_i, \tau_j), K(\psi))$ $/K(\psi^F)$).

As for the crossed product $A = (\beta(\tau_i, \tau_j), K(\psi)/K(\psi^F))$ in Theorem 2, we recall that if K is a finite extension of the rational p-adic number field Q_p for a prime p, then the \mathfrak{P} -invariant of A equals $\rho \cdot (K(\psi^F): Q_p(\psi^F))$ where ρ is the \mathfrak{p} -invariant of $B = (\beta(\tau_i, \tau_j), Q_p(\psi)/Q_p(\psi^F))$. Here \mathfrak{P} and \mathfrak{p} are the prime ideals of $K(\psi^F)$ and $Q_p(\psi^F)$ respectively, that divide p. Now B is a "Kreisalgebra" and its \mathfrak{p} -invariant was calculated by Witt [3].

References

- [1] C. W. Curtis and I. Reiner: Repesentation Theory of Finite Groups and Associative Algebras. Interscience, New York (1962).
- [2] B. Huppert: Endliche Gruppen. I. Springer, Berlin (1967).
- [3] E. Witt: Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlenkörper. J. reine angew. Math., **190**, 231-245 (1952).