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198. Two Spaces whose Product has
Closed Projection Maps

By Masahiko ATSUJI
Department of Mathematics, Josai University, Saitama

(Comm. by Kinjir6 KUNUGI, M. Z. A., Dec. 12, 1969)

This note will give several equivalent properties with that of two
spaces in the title and some properties of the spaces. This is also a
preparation for the forthcoming paper [2].

Throughout this note, spaces are Hausdorff. We use notations
in [1].

Definition 1 (cf. [4, p. 365]). A set A in X Y is called to be
upper semi-continuous at a e X if for any open set G in Y containing
A[a] there is U e?2 with [_)A[x]G. A is called upper semi-

x60"

continuous at X if A is upper semi-continuous at every point of X.
It is easily seen that A is upper semi-continuous at X if and only

if the set {x e X; A[x] G} is open in X for every open G of Y.
Definition 2. Let a be a point of X. A space Y with the follow-

ing property is called to be upper compact at a. Let Z be any subset
of X with a e Z, and let {Ax x Z} be any family of non-empty subsets
of Y, then lim sup A4:. Y is called upper compact at X when Y is

upper compact at every point of X.
In this definition we can replace 2 by 2-Z.
The following is seen easily.
Proposition 1. A closed subset of a space which is upper com-

pact at a e X is upper compact at a.
Proposition 2. In order that Y is upper compact at a e X, it is

necessary and sufficient that for any subset Z of X with a e , and for
any family {By; U e} of subsets of Y such that

for every point x e Z, it holds B-- 4= O.
ue?Ra

Proof. Necessity. Put
A-

for Z, hen A is not empty, so

U691 x6U U
SuzSciency. Let {A x e ZX}, a e Z, be an arbitrary amily o

non-empty subsets o X. Put
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then

or x e Z, so we have

Bu--A,
xGU

USx

) A= ( Bv=/=O.
URa x6U

Corollary. In order that Y is upper compact at a eX, iS is
necessary and sucient that for any open cover (R)-(Gu U e ?R) of Y
and for any subset Z of X with a e 2, there is a point Xo e Z such
(Gu U Xo) is a subcover of (R).

Proposition 3. The property that Y is upper compact at a e X
is necessary and sufficient in order that any closed subset A of X Y
is upper semi-continuous at a.

Proof. Necessity. Suppose that
1 ) lim sup A=0

for some family (A; x e Z) of non-empty A and for some ZX with
a Z. Then there is U0 e such that for some non-empty open Gc Y,
(2) A_G
for all x U0. Take a point y e G and put

B-- (x, A U (y)).
x Uo

Then, for every x e U0,
[x]B[x]--AU(y},
B[x]G,

namely, for any U e there is x e U with
(3) B[x]

_
G.

On the other hand, from Proposition 2 in [1] and (1) we have
/[a] lim sup (A (2 {y}) (y} G,

which means together with (3) that B is not upper semi-continuous at a.
Sufficiency. Suppose that there is a non-empty closed set

AXY which is not upper semi-continuous at a. (An empty set is
upper semi-continuous.) There is an open set G including A[a]
such that for any Ue there is xe U with A[xv]G. Put
B--A[x]- G or x X, then

B-- (x, B)-A--(X G)
X

is closed in XY. B[xu]:O and ae{xu;Ue}. Since Y is upper
compact at a, we have from Corollary 1 to Proposition 2 in [1]

lira sup B[xu] lim sup B[x]=B[a]=A[a]-G=O,

the contradiction.
Proposition 4. Y is upper compact at X if and only if the pro-

]ection map of X Y onto X is closed.
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Proof. Suppose that Y is upper compact and A is a closed subset
of X Y, and that there is a point

a e projx A projx A.
From Corollary 1 to Proposition 2 in [1], we have lim sup A[x] A[a]

=, which contradicts the upper compactness of Y.
Conversely, suppose that projx is closed. Consider any family

{A x e ZX}, a e Z, o non-emptyAY, and put
A-- [.) (x,A).

$Z

Since Z projx A, we have

a e Zprojx A=projx A,
lira sup A-A[a]:

by Proposition 2 in [1].
The ollowing is essentially well known.

Corollar 1. A space Y is compact if and only if Y is upper
compact at any space.

Definition :o Let m be a cardinal number. A space is called
m-compact if every open cover of power __< m of the space has a finite
subcover.

Corollar 2 (cf. the footnote on p. 234 of [5]). If a point a of X
has the character <=m, and if Y is m-compact, then Y is upper com-
pact at a.

Though the following is essentially known, we shall give a proof
in our version.

Proposition . If a non-discrete space X satisfies the first axiom
of countability, then Y is upper compact at X if and only if Y is
countably compact.

Proof. From Corollary 2 above, it suffices to verify "only if"
part. Suppose that a countable open cover (R)-{G, G, ...} of Y is
given. Take a non-isolated point a in X, then we can select a sequence
{x, x,...} of points of X which converges to a and a neighborhood
base {U, U,...} of a such that xe Un for all in. Considering

G-G and Z=[x, x, ...}, and applying Corollary to Proposition 2,
we have a finite subcover of (R).

lxample. Let w be the first uncountable ordinal number, and
denote by W(a) for an ordinal number a the space consisting of all
ordinals less than a with the order topology.

( 1 ) By Proposition 5, W(w) is upper compact at itself.
( 2 From the definition, W(w) is not upper compact at W(w+ 1),

i.e., not upper compact at w.
Definition 4. Let m be a cardinal number. A space X is said to

be m-paracompact if any open cover with power <=m of X admits a
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locally finite open refinement. Let be a cardinal number. A space
X is said to be -Lindel6f if any open cover of X includes a subcover
of power gn.

Definition 5. A family {G; e A} of open sets in a space is said
an open base for closed sets if for any closed set A and any open set
E containing A there is 2 e A with A GE.

Proposition 6. A space X is compact and metrizable if and only

if it is regular and has an open base of power o for closed sets.
Proof. Suppose that X is compact and metrizable, then it has a

countable open base {En ;n=l, 2,...}. Denote by F the totality of
all the finite sets of natural numbers, and put

G-E
for y e F, then {G; y e F} is an open base for closed sets in X with
F 0, where F is the power of F.

Conversely, suppose that a regular space X has an open base
{Gn;n=l, 2,...} or closed sets. Since it is an open base, we can
consider that X is a metric space with a distance function d. If X is
not compact, then there is a sequence (Xn; n--l, 2,...} of points
without accumulation point and a sequence {rn ;n-l, 2,...} of posi-
tive numbers such that U={x;d(xn, x)<r} does not include any x
with iCn. For any set a of natural numbers there is G(.) such that

and G() G(,) for a a’, which is impossible because of 2 0.
Since an open base for closed sets is an open base for the space,

we easily have
Proposition 7. If a space has an open base for closed sets of

power , then it is m-Lindel6f.
Definition 6. Let m be a cardinal number, and A a subset of X.

A point a e A is said to be an m-point of A if for any family
of neighborhoods of a with power m, it holds
(1) A( U)0.

_U
If (1) holds or any A with a e A, then a is called aD. m-point.

In this definition we can replace A by A--A. A P-point in the
sense of [3] is an 0-point in our sense.

Proposition 8. An m-Lindel6f space Y is upper compact at an
m-point a e X.

Proof. Suppose that {A, Y x e ZX}, a e Z, is given with

U A--0.
{C( A.); U e} is an open cover of Y, so there is a subfamily of
mU

with power m such that {C( A); U e } is a cover of Y. Since
xU
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a is an m-point, there is a point z e Z { U}, and
ve

the contradiction.
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