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198. Two Spaces whose Product has
Closed Projection Maps

By Masahiko ATSUJI

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjiré KUNUGI, M. J. A., Dec. 12, 1969)

This note will give several equivalent properties with that of two
spaces in the title and some properties of the spaces. This is also a
preparation for the forthcoming paper [2].

Throughout this note, spaces are Hausdorff. We use notations
in [1].

Definition 1 (cf. [4, p. 365]). A set A in XX Y is called to be
upper semi-continuous at a < X if for any open set G in Y containing
Ala]l there is UeN, with | AlzlcG. A is called upper semi-

xeU
continuous at X if A is upper semi-continuous at every point of X.

It is easily seen that A is upper semi-continuous at X if and only
if the set {x ¢ X ; A[x]C G} is open in X for every open G of Y.

Definition 2. Let @ be a point of X. A space Y with the follow-
ing property is called to be upper compact at a. Let Z be any subset
of X witha € Z, and let {A.;; v € Z} be any family of non-empty subsets
of Y, then lim sup A,+#0. Y is called upper compact at X when Y is

upper compact at every point of X.

In this definition we can replace Z by Z—Z.

The following is seen easily.

Proposition 1. A closed subset of a space which is upper com-
pact at a ¢ X is upper compact at a.

Proposition 2. In order that Y is upper compact at ac X, it is
necessary and sufficient that for any subset Z of X with a c Z, and for
any family {By; UeN,} of subsets of Y such that

n B, +0
for every point x ¢ Z, it holds (0 By+0.
UeNa
Proof. Necessity. Put
jlx:: f\7§;

Usx
for x ¢ Z, then A4, is not empty, so

P+ N U A4,C (N By.
UcNg €U Ueﬁy
Sufficiency. Let {4,; xe ZC X}, ac Z, be an arbitrary family of
non-empty subsets of X. Put
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BU: U Ax,
zeU
then
Usx

for x ¢ Z, so we have
N UA4,= N By#0.

UeERNg v€U UeNa

Corollary. In order that Y is upper compact at ac X, it is
necessary and sufficient that for any open cover &={Gy; UeN,} of Y
and for any subset Z of X with ac Z, there is a point x,< Z such that
{Gy; Usay} is a subcover of ©.

Proposition 3. The property that Y is upper compact at ae X
18 necessary and sufficient in order that any closed subset A of XXY
18 upper semi-continuous at a.

Proof. Necessity. Suppose that
(1) lim sup A,=0
for some family {A,; € Z} of non-empty A, and for some ZC X with
ac Z. Then thereis U, e N, such that for some non-empty open GCY,
(2) A, 72G
for all x ¢ U,. Take a point y € G and put
B= mgj (x, AU {yD.
Then, for every x ¢ U, B
Blz]DBlzl=A,U{y},

Blzl¢ G,
namely, for any U e R, there is_ x e U with
(3) BlxlZ G.

On the other hg,nd, from Proposition 2 in [1] and (1) we have
Bla]=1lim sup (4, U{y)={y}CG,

which means together with (3) that B is not upper semi-continuous at a.

Sufficiency. Suppose that there is a non-empty closed set
ACXXY which is not upper semi-continuous at a. (An empty set is
upper semi-continuous.) There is an open set G including Ala]
such that for any Ue R, there is a2y, ¢ U with Alx;]Z G. Put
B,=A[x]—G for x e X, then

B= UX(x, B)=A—-(XX®
xE€
is closed in XX Y. Blzyl#0 and ac{xy; UeN,}. Since Y is upper
compact at a, we have from Corollary 1 to Proposition 2 in [1]
0=1lim sup Blx,]lclim sup Blz]l=Bla]l=Ala]l-G=0,

the contradiction.

Proposition 4. Y s upper compact at X if and only if the pro-
jection map of X XY onto X s closed.
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Proof. Suppose that Y is upper compact and A is a closed subset
of X XY, and that there is a point
aeprojy A—projy A.
From Corollary 1 to Proposition 2 in [1], we have lim sup A[x]=Ala]

=0, which contradicts the upper compactness of Y.
Conversely, suppose that projy is closed. Consider any family
{A,; xec ZC X}, ac Z, of non-empty A,CY, and put
A= U (x: A.r)o

x€EZ
Since ZC projy A, we have

aec Zcprojy {_1=pron A,
lim sup 4,=Ala]+0

by Proposition 2 in [1].

The following is essentially well known.

Corollary 1. A space Y is compact if and only if Y is upper
compact at any space.

Definition 3. Let m be a cardinal number. A space is called
m-compact if every open cover of power <m of the space hag a finite
subcover.

Corollary 2 (cf. the footnote on p. 234 of [5]). If a point a of X
has the character <m, and if Y is m-compact, then Y is upper com-
pact at a.

Though the following is essentially known, we shall give a proof
in our version.

Proposition 5. If a non-discrete space X satisfies the first axiom
of countability, then Y is upper compact at X if and only if Y is
countably compact.

Proof. From Corollary 2 above, it suffices to verify “only if”
part. Suppose that a countable open cover &={G,, G,, ---} of Y is
given. Take a non-isolated point ¢ in X, then we can select a sequence
{2, @, -+ -} of points of X which converges to & and a neighborhood
base {U,, U, ---} of a such that x,¢ U, for all i<n. Considering
Gy,=G, and Z={x,, x,, - - -}, and applying Corollary to Proposition 2,
we have a finite subcover of &.

Example. Let o, be the first uncountable ordinal number, and
denote by W(a) for an ordinal number « the space consisting of all
ordinals less than a with the order topology.

(1) By Proposition 5, W(w,) is upper compact at itself.

(2) From the definition, W(w,) is not upper compact at W(w,+1),
i.e., not upper compact at w,.

Definition 4. Let m be a cardinal number. A space X is said to
be m-paracompact if any open cover with power <m of X admits a
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locally finite open refinement. Let n be a cardinal number. A space
X is said to be n-Lindelof if any open cover of X includes a subcover
of power <n.

Definition 5. A family {G;; 4 € 4} of open sets in a space is said
an open base for closed sets if for any closed set A and any open set
FE containing A there is 1¢ 4 with ACG,CE.

Proposition 6. A space X is compact and metrizable if and only
if it is regular and has an open base of power <\, for closed sets.

Proof. Suppose that X is compact and metrizable, then it has a
countable open base {E,;n=1,2, ...}. Denote by I' the totality of
all the finite sets of natural numbers, and put

GT= U En

ney

for y eI, then {G,; y e I'} is an open base for closed sets in X with
I |=%%¢s Where || I'|| is the power of I'.

Conversely, suppose that a regular space X has an open base
{G,;n=1,2, ...} for closed sets. Since it is an open base, we can
consider that X is a metric space with a distance function d. If X is
not compact, then there is a sequence {z,;n=1,2, --.} of points
without accumulation point and a sequence {r,;n=1,2, ...} of posi-
tive numbers such that U,={z; d(x,, ¥)<r,} does not include any =z,
with ¢#n. For any set « of natural numbers there is G, such that

{31 a}C Gy C i%j U,

and G, # G, for a#a’, which is impossible because of 2*>R,.

Since an open base for closed sets is an open base for the space,
we easily have

Proposition 7. If a space has an open base for closed sets of
power <m, then it is m-Lindeldf.

Definition 6. Let m be a cardinal number, and A a subset of X.
A point a e A is said to be an m-point of A if for any family F={U}
of neighborhoods of @ with power <m, it holds
(1) AN DY+0.

_Ueg
If (1) holds for any A with a ¢ A, then a is called an m-point.

In this definition we can replace A by A—A. A P-point in the
sense of [3] is an Y,-point in our sense.
Proposition 8. An m-Lindelof space Y is upper compact at an
m-point a ¢ X.
Proof. Suppose that {4,CY; 2c ZC X}, ae Z, is given with
N UA,=0.

UeRa €U

{CCU A, ; UeN,} is an open cover of Y, so there is a subfamily § of
xeU
N, with power <m such that {C(\J A,); Ue F}isacoverof Y. Since
xeU
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o is an m-point, there is a point ze ZN{ M U}, and
Ue

0+A,C N Uszﬂ,
Uef xel
the contradiction.
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