197. Necessary and Sufficient Conditions for the Normality of the Product of Two Spaces

By Masahiko AtsuJi
Department of Mathematics, Josai University, Saitama
(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1969)

In this paper we shall present a solution (Theorem) of the problem to find necessary and sufficient conditions for the normality of a product space $X \times Y$.

This fundamental problem has been researched by many mathematicians probably since about the time (1925) when the importance of normal spaces was found by P. Urysohn [1]. Though the problem has been unsettled for a fairly long time, the proof of our Theorem is simple and elementary. Difficulty may have been in the formulation of the theorem, which is natural but apparently pretty different from ones conjectured from known partial solutions.

In this paper a space is, unless otherwise specified, topological.
Let A be a subset of the product space $X \times Y$ of spaces X and Y, then we write for $x \in X$

$$
A[x]=\{y \in Y ;(x, y) \in A\} .
$$

Definition 1. Let \mathfrak{F} be a family of neighborhoods of $a \in X$, and let $\left\{A_{x} ; x \in Z \subset X\right\}$ any family of subsets A_{x} of Y, then we write

$$
\begin{gathered}
\lim \sup A_{x}=\bigcap_{U \in \mathfrak{F}} \bigcup_{x \in U} A_{x}, \\
c-\lim _{\mathfrak{F}} \sup _{x}=Y-\underset{\mathfrak{F}}{\lim \sup }\left(Y-A_{x}\right),
\end{gathered}
$$

where the bar means the closure in Y and $x \in U$ does $x \in U \cap Z$.
Hereafter, let us denote by $\mathfrak{\Re}_{a}$ for $a \in X$ the neighborhood system of a in X, and we write "lim sup" instead of "lim sup". We can easily obtain

Proposition 1. Let \mathfrak{M} be a neighborhood base of a in X, then

$$
\begin{aligned}
& \lim _{a} \sup A_{x}=\underset{\mathfrak{M}}{\lim \sup } A_{x}, \\
& c-\lim _{a} \sup A_{x}=c-\underset{\mathfrak{M}}{\lim \sup } A_{x} .
\end{aligned}
$$

Proposition 2. Let $\left\{A_{x} ; x \in Z \subset X\right\}$ be any family of sets $A_{x} \subset Y$, and put

$$
\begin{aligned}
& \left(x, A_{x}\right)=\left\{(x, y) ; y \in A_{x}\right\} \\
& A=\bigcup_{x \in Z}\left(x, A_{x}\right)
\end{aligned}
$$

then
(i) $\bar{A}[a]=\lim \sup A[x]=\lim \sup A_{x}$,
(ii) $A^{0}[a]=c-\lim \sup A[x]=c-\lim \sup A_{x}$
for any $a \in X$, where the bar and 0 mean the closure and the interior in $X \times Y$ respectively.

Proof of (i) is obtained by the following equivalent statements.

$$
p \in \bar{A}[\alpha]
$$

$$
(a, p) \in \bar{A}
$$

$$
(U \times V) \cap A \neq \emptyset \text { for any } U \in \mathfrak{N}_{a} \text { and } V \in \mathfrak{R}_{p}
$$

$$
V \cap A[x] \neq \emptyset \text { for any } U \in \mathfrak{N}_{a}, V \in \mathfrak{R}_{p} \text { and some } x \in U .
$$

$$
V \cap\left\{\bigcup_{x \in U} A[x]\right\} \neq \emptyset \text { for any } U \in \mathfrak{N}_{a} \text { and } V \in \mathfrak{N}_{p}
$$

$$
p \in \bigcup_{x \in U} A[x] \text { for any } U \in \mathfrak{N}_{a}
$$

$$
p \in \bigcap_{U \in \mathfrak{R} a} \overline{\bigcup_{x \in U} A[x]}
$$

The proof of (ii) is obtained by this:

$$
\begin{aligned}
c-\lim _{a} \sup A[x] & =Y-\lim _{a} \sup (Y-A[x]) \\
& =Y-\lim _{a} \sup (X \times Y-A)[x] \\
& =\mathcal{C}(\overline{C A}[a])=(\overline{\mathcal{C A} A})[a]
\end{aligned}
$$

where \mathcal{C} means the complement.
Corollary 1. A set A in $X \times Y$ is closed (open) if and only if

$$
\begin{aligned}
\lim _{a} \sup A[x] & =A[a] \\
\left(c-\lim _{a} \sup A[x]\right. & =A[a])
\end{aligned}
$$

for any $a \in X$.
Corollary 2. Let $\left\{A_{x} ; x \in Z \subset X\right\}$ be any family of sets $A_{x} \subset Y$, then
$\lim _{a} \sup A_{x}=\lim _{a} \sup \left(\lim \sup _{z} A_{x}\right)$, $c-\lim _{a} \sup A_{x}=c-\lim _{a} \sup \left(c-\lim _{z} \sup A_{x}\right)$.
Proof. Put

$$
\begin{gathered}
A=\bigcup_{x \in X}\left(x, A_{x}\right), \\
B=\bigcup_{z \in X}\left(z, \lim _{z} \sup A_{x}\right),
\end{gathered}
$$

then

$$
\bar{A}[a]=\lim _{a} \sup A_{x}=B[a]
$$

for any $a \in X$, so we have
$\bar{A}=B$,
$\lim _{a} \sup \left(\lim _{z} \sup A_{x}\right)=\bar{B}[a]=B[a]=\lim _{a} \sup A_{x}$.
Definition 2. The following property is denoted by $P(X, Y)$. Let $\left\{A_{x} \subset Y ; x \in X\right\}$ and $\left\{B_{x} \subset Y ; x \in X\right\}$ be any families with (*)
$\lim _{a} \sup A_{x} \cap \lim _{a} \sup B_{x}=\emptyset$
for any $a \in X$, then there are families $\left\{G_{x} \subset Y ; x \in X\right\}$ and $\left\{H_{x} \subset Y ; x \in X\right\}$ satisfying

$$
\begin{gather*}
G_{x} \cap H_{x}=\emptyset \text { for any } x \in X, \tag{i}\\
c-\lim _{a} \sup G_{x} \supset A_{a} \tag{ii}
\end{gather*}
$$

and

$$
c-\lim \sup H_{x} \supset B_{a}
$$

foy any $a \in X . \quad\left\{G_{x} ; x \in X\right\}$ and $\left\{H_{x} ; x \in X\right\}$ are called the separating families (or separators) of $\left\{A_{x} ; x \in X\right\}$ and $\left\{B_{x} ; x \in X\right\}$.

Remark. We consider A_{x} and B_{x} are defined for every point x of X, and they may be empty for some x. Considering Corollary 2 above, in Definition 2 we can assume that A_{x} and B_{x} are closed and G_{x} and H_{x} are open. It is convenient to have another formulation: $c-\lim \sup _{a} A_{x}=\bigcup_{U \in \Re a}\left(\bigcap_{x \in U} A_{x}\right)^{0}$.

Proposition 3. The property $P(X, Y)$ is equivalent with the following property $P_{1}(X, Y)$. Let $\left\{A_{x} \subset Y ; x \in X\right\}$ and $\left\{B_{x} \subset Y ; x \in X\right\}$ be any families with

$$
\begin{equation*}
\lim \sup A_{x} \cap \lim \sup B_{x}=\emptyset \tag{*}
\end{equation*}
$$

for any $a \in X$, then there is a family ${ }^{a}\left\{G_{x} \subset Y ; x \in X\right\}$ satisfying
$c-\lim _{a} \sup G_{x} \supset A_{a}$
and
(ii)

$$
\lim _{a} \sup G_{x} \cap B_{a}=\emptyset
$$

for any $a \in X$.
Proof. Suppose that $P(X, Y)$ is satisfied, then there are $\left\{G_{x} ; x \in X\right\}$ and $\left\{H_{x} ; x \in X\right\}$ satisfying (i) and (ii) in Definition 2, and we have $B_{a} \subset c-\lim _{a} \sup H_{x} \subset c-\lim _{a} \sup \mathcal{C} G_{x}=\mathcal{C}\left(\lim _{a} \sup G_{x}\right)$,
namely,
$\lim \sup G_{x} \cap B_{a}=\emptyset$.
Assuming conversely $P_{1}(X, Y)$, we put $H_{x}=\mathcal{C} G_{x}$, then
$B_{a} \subset \mathcal{C}\left(\lim _{a} \sup G_{x}\right)=c-\lim _{a} \sup H_{x}$.
It is said that a space satisfies the separation axiom T_{4} if any two disjoint closed subsets of the space are separated by two disjoint open subsets.

Proposition 4. If $P(X, Y)$ is satisfied, then Y satisfies the separation axiom T_{4}

Proof. Let A and B be any two disjoint closed subsets of Y. Take a point $c \in X$, and put $A_{c}=A$ and $B_{c}=B$, and $A_{x}=B_{x}=\emptyset$ for $x \neq c$, then

$$
\lim _{a} \sup A_{x} \cap \lim _{a} \sup B_{x}=\emptyset
$$

for any $a \in X$, so there are separating families $\left\{G_{x} \subset Y ; x \in X\right\}$ and $\left\{H_{x} \subset Y ; x \in X\right\}$ of $\left\{A_{x}\right\}$ and $\left\{B_{x}\right\} . \quad T_{4}$ follows from

$$
\begin{aligned}
& G_{c}^{0} \supset c \text {-lim sup } G_{x} \supset A_{c}, \\
& H_{c}^{0} \supset c-\lim _{c} \sup H_{x} \supset B_{c} .
\end{aligned}
$$

Now we can prove our main theorem.
Theorem. One of the properties $P(X, Y)$ and $P(Y, X)$ is necessary and sufficient in order that the product space $X \times Y$ satisfies the separation axiom T_{4}.

Proof. Necessity. Suppose that $X \times Y$ satisfies T_{4} and that $\left\{A_{x} \subset Y ; x \in X\right\}$ and $\left\{B_{x} \subset Y ; x \in X\right\}$ fulfil

$$
\begin{equation*}
\lim \sup A_{x} \cap \lim \sup B_{x}=\emptyset \tag{1}
\end{equation*}
$$

for any $a \in X$. Put

$$
A=\bigcup_{x \in X}\left(x, A_{x}\right)
$$

and

$$
B=\bigcup_{x \in X}\left(x, B_{x}\right),
$$

then $\bar{A} \cap \bar{B}=\emptyset$ by Proposition 2 and (1). There are disjoint open subsets G and H of $X \times Y$ with $G \supset \bar{A}$ and $H \supset \bar{B}$. $\{G[x] ; x \in X\}$ and $\{H[x] ; x \in X\}$ are the separating families of $\left\{A_{x} ; x \in X\right\}$ and $\left\{B_{x} ; x \in X\right\}$. In fact, by Corollary 1 to Proposition 2,

$$
\begin{aligned}
& c-\lim _{a} \sup G[x]=G[a] \supset \bar{A}[a] \supset A_{a}, \\
& c-\lim _{a} \sup H[x] \supset B_{a}
\end{aligned}
$$

for any $a \in X$.
Sufficiency. Suppose that $P(X, Y)$ is satisfied and A and B are disjoint closed subsets of $X \times Y$. Corollary 1 to Proposition 2 follows $\lim _{a} \sup A[x] \cap \lim _{a} \sup B[x]=\emptyset$
for any $a \in X$, so there are separating families $\left\{G_{x} ; x \in X\right\}$ and $\left\{H_{x} ; x \in X\right\}$ of $\{A[x] ; x \in X\}$ and $\{B[x] ; x \in X\}$. Put

$$
G=\bigcup_{x \in X}\left(x, G_{x}\right)
$$

and

$$
H=\bigcup_{x \in X}\left(x, H_{x}\right),
$$

then, by Proposition 2,

$$
G^{0}[a]=c-\lim _{a} \sup G_{x} \supset A[a]
$$

for any $a \in X$, namely, $G^{0} \supset A$; similarly $H^{0} \supset B$. Since G and H are disjoint, G^{0} and H^{0} separate A and B.

Remarks. The following remarks are easily seen from the proof above.
(1) If $X \times Y$ satisfies T_{4} then $P(X, Y)$ and $P(Y, X)$ are both necessary, so by Proposition 4 both X and Y also necessarily satisfy T_{4}.
(2) In order that $X \times Y$ satisfies T_{4}, one of the properties $P_{2}(X, Y)$ and $P_{2}(Y, X)$, say $P_{2}(X, Y)$, is necessary and sufficient which is given by replacing (i) and (ii) in the definition of $P(X, Y)$ by
($\mathrm{i}^{\prime \prime}$)
$c-\lim \sup G_{x} \cap c-\lim \sup H_{x}=\emptyset$
for any $a \in X$,
(ii") $c-\lim _{a} \sup G_{x} \supset \lim _{a} \sup A_{x}$
and $c-\lim _{a} \sup H_{x} \supset \lim _{a} \sup B_{x}$
for any $a \in X$.

Reference

[1] P. Urysohn: Ueber die Möchtigkeit der zusammenhängenden Mengen. Math. Ann., 94, 262-295 (1925).

