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1. Introduction. In this paper the followings shall be proved.
Let G be a locally compact totally disconnected non-discrete group and
let T be a continuous automorphism of G. If there are two elements
a and w in G such that {T(a)(w)ln=O, +_1, +_2, ...} is dense in G then
G is compact, where T(a) is the continuous affine transformation o G
defined by T(a)(x)-a. Tx or x in G. Next let G be a locally compact
totally disconnected (not necessarily non-discrete) group and let T be a
continuous automorphism of G such that there is an element w in G
such that {T(w)]n--O, _+1, +2, ...} is dense in G. Then G is compact,
whence T. S. Wu’s problem (see [1, p. 518] and also [6]) raised in 1967
concerning the study of topology of a locally compact group G which
admits an ergodic continuous automorphism with respect to a Haar
measure on G is solved affirmatively.

Recently M. Rajagopalan and B. Schreiber [4] have proved that
if a locally compact group G has a continuous automorphism which is
ergodic with respect to a Haar measure on G then G is compact. In
their proof the property of Fourier-Stieltjes coefficients o idempotent
measures on the torus K- {exp (iO) 0 =< 0 2} plays an important role.
In studying their techniques of the proof I have been led to that the
techniques can be applied to the arguments o continuous affine trans-
formations.

2. Continuous atine transformations. Throughout this paper,
T and T(a) will be denoted a continuous automorphism of a locally
compact group G and a continuous affine transformation of G induced
by a in G and T, respectively.

Lemma 1. Let H be a complex Hilbert space, let A be a bounded
operator and U1, U. unitary operators on H. Then for given and

] in H there is a complex regular measure/ on the 2-dimensional torus
KK whose Fourier-Stielt]es transform is given by

(m, .n) (A U?$, U}, c <m, n< c.

Proof. Let p and p denote spectral measures on [0,27D for U
and U., respectively. For , ] in H we have
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This implies that /(,)=AU, U>, -,, is a Fourier-
Stieltjes transform of some complex regular measure on KK. The
proof is complete.

By Lemma I nd [5, Theorem 2.7.2] it follows that the sequence
(,)=_ is the sequence of Fourier-Stieltjes coecients of some
complex regular measure on the torus K.

Lemma 2. Let G be a locally compact group and let T(a) be a
continuous ane transformation of G such that there is an element w
in G such that (T(a)(w)]n=O, 1, 2, ...} is dense in G. Then T is
bi-continuous.

Proof. A locally compact group G which contains a countable
dense set is a-compact, and so T is an open automorphism by [3, The-
orem (5.29)].

For x in G let V(x) be the unitary operator on L(, ), where is
a left invariant Haar measure on G, defined by

V(x)f(y) f(xy) (y e G, f e L2(G, )).
Let T(a) be as in Lemma 2 then there is >0 such that (T(a)(E))

=I(E) for all Borel sets E of G. Then the operator U(a) on L2(G,
defined by

U(a)f(y)=f(T(a)y)-f(a. Ty) (y G, f L(G, ))
is unitary and U(a)-f(y)--f(T(a)-y)=-f(T-a-.T-y). We will
denote by e the identity element in G and by U the unitary operator
U(e). Then we have the following

Lemma 3. V(T(a)(x))= U-V(x)U(a) for every integer n and
every x in G.

ProoL Let x in G, n an integer, and f L(G, ). Then
U V(x)U(a)f(y) U V(x)[f(T(a)(y)]

U-[f(T(a)(xy))] f(T(a)(x T-y)) f(T(a)(x), y)
V(T(a)(x))f(y).

Theorem 1. Let G be a locally compact totally disconnected non-
discrete group and let T(a) be a continuous ane transformation of G
such that there is an element w in G such that {T(a)(w)]n=O, 1,

2, ...) is dense in G. Then G is compact.
ProoL Let N be a compact open subgroup of G and let be

normalized so that (N)= 1. Let U(a) and V be as above. For x in

G and n an integer we define
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an(X)-- V(x)U(a)nZ, UnZN U-nV(x)U(a)nZN,
where is the indicator function of N. From Lemma 3 it follows

an(X)-- (V(T(a)n(x))zr,
T(a)(x) Y)ZN(Y)d2(Y)

1 if x e T(a)-%N)
0 if x T(a)-(N).

(1)

Thus a(T(a)(x))=(V(T(a)+(x))z, Z)=a+(x) for every integer n.
By Lemma i and the note below it, (1) implies that the sequence

(an(X)=_ is a sequence of Fourier-Stieltjes coefficients of some
idempotent measure on the torus K, therefore (a(x))_ differs from
a periodic sequence in at most finitely many places (see [2] or [5, 3.1.6]),
from which the sequences {(a(x)Ix e G} are countable. But the set
M(x) defined by

/(x)= {y G(an(y)

T(a)-n(N"),

where N’-N if e=a(x)=l and N’=GNc if $n=an(X)=O, is an
intersection of closed sets, and so it is closed. Thus the Baire category
theorem implies that there is at least one element x in G such that M(x)
has non-void interior. Then the set

M*(x)= T(a)(M(x))

{y e G lfa(y))- (an+(x) for some integer k}
must contain the set {T(a)(w)]]=O, 1, 2, ...} for M(x) is T(a)-
invariant and M(x)c M*(x).

If an(X)=O for all but finitely many n, let k=1+ max
a(x)=an(X)= 1}. Since {T(a)(w)ln=O, 1, 2,... } is dense in G there
are two integers m and n such that m-nlk and T(a)(w), T(a)(w)
belong to N, whence T(a)-(N)T(a)-n(N) is non-void open in G
and disjoint from M*(x), which is impossible. Thus a(x)= 1 for in-
finitely many n, from which and the essentially periodic property
the sequence (a(x) it can be chosen a positive integer p such that in
every interval of length p there is at least one n for which a(x)-1.
This demonstrates

M*(x) cN U T(a)(N) U U T(a)(N).
Thus the compactness of G follows. The proof is complete.

Corollary. Let G be a locally compact totally disconnected non-
discrete group and let a be an element in G such that {an=0, 1,

2, .} is dense in G. Then G is compact.
Theorem 2. Let G be a locally compact totally disconnected non-

discrete group with a countable open basis and let T(a) be a continuous

ane transformation of G. If T(a) is ergodic with respect to a Haar
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measure on G then G is compact.
Proof. Let (Os[]= 1, 2, 3,... } be a countable open basis of G and

put

E-G( T(a)n(O))c and E-JE.
Since T(a) is ergodic, 2(E)=0 for all ], whence 2(E)-0. Therefore
T(a) has a dense orbit {T(a)n(x)]n=O, ___1, _+2,...} for almost all x in
G. Thus Theorem 1 implies that G is compact.

Theorem 3. Let G be a locally compact totally disconnected (not
necessarily non-discrete) group and let T be a continuous automorphism
which has a dense orbit in G. Then G is compact.

The proof is essentially identical with it o Theorem 1, and so it
is sufficient to see that or every open subgroup N of G and for every
pair (m, n) of integers T(N) Tn(N) is non-void open in G.

Remark 1o The non-discreteness o G in Theorems 1 and 2 is not
omitted. For let G be the additive group of integers with discrete
topology and let I be the identity transformation of G. Then the affine
transformation I(1) defined by I(1)(n)- 1 + I(n)= 1 + n for n in G is
ergodic with respect to a Haar measure on G and has a dense orbit
{I(1)(1) In-0,

___
1, ___2,...}-G. But G is trivially non-compact.

Remark 2. The non-discreteness and the second countability of
G in Theorem 2 can be omitted if a continuous automorphism of G is
ergodic (cf. [4]). This is similar to the relation between Theorems 1
and 3.

I wish to express my deep appreciation to Professor Shigeru
Tsurumi or available discussions concerning the above problems.
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