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23. Every C.Symmetric Banach ,.Algebra is Symmetric)

By Noboru SUZUKI
University of California, Irvine and University of British Columbia

(Comm. by Kinjir KUNV(I, M. $..., Feb. 12, 1970)

Since Gelfand and Naimark [1] had conjectured the symmetry of
B*-algebras, I. Kaplansky raised the more general question" is a
C-symmetric Banach ,-algebra symmetric ?, and it remained open dur-
ing the past twenty years. One knew that an intrinsic key to this
problem is to prove that the sum of positive elements is also positive
(for B*-algebras, see [2], [5]). Recently we have proved in [9] that in
a Banach ,-algebra with the norm condition llx*llllxll <_ IIx*xll (>0),
the positive elements form a positive cone, and then it turned out that
the method employed there can be applied for C-symmetric Banach
,-algebras by a slight modification. Meantime, we have heard that
S. Shirali and J. Ford [8] have solved Kaplansky’s problem in the
affirmative, that is, the following result has been established.

Theorem, A C-symmetric Banach ,-algebra is necessarily sym-
metric.

In this paper we will supply a technically simple and possibly
quick proof of the theorem by an adequate improvement of our
previous work [9].

1, Let us recall that a Banach ,-algebra A is symmetric if x*x
is quasi-regular for all x in A; it is C-symmetric .if every closed com-
mutative ,-subalgebra is symmetric. In case A has a unit e, the
symmetry means that e + x*x is invertible for every x in A and there-
fore the C-symmetry means that e + x*x is invertible for every normal
element x (i.e., x*x=xx*) in A. Throughout this paper we shall
mainly concern a (complex) Banach ,-algebra A with unit e. We denote
by a(x) the spectrum of an element x in A; a seff-adjoint element h
in A is said to be positive (strictly positive) if a(x)[0, o)((0, o)),
respectively, and then for self-adjoint elements h, k in A, we under-
stand the symbol h_</c (or h k) as usual. For a normal element x in
A, A(x) always means a maximal commutative ,-subalgebra of A con-
taining x, and we should recall that A(x) is automatically closed.
In the proof of the theorem, the fact that a strictly positive element
in A has a (strictly) positive square root will play a relevant role
(cf. [3], [0]).

1) This research was partially supported by the National Science Foundation
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Lemma 1. Let h be a strictly positive element in a Banach
,-algebra A with unit. Then there exists a positive element k in A(h)
such that h= k.

2. Let us consider a symmetric commutative Banach ,-algebra
A with unit e. Then the Gelfand representation of A may be stated
as follows" A is ,-isomorphic with a dense ,-subalgebra of the
algebra C(9) of all continuous functions on 9, where 9 is the spectrum
of A, that is, it is the compact I-Iausdorff space consisting of all
multiplicative linear functionals p on A with (e)= 1. Moreover, let
us recall that for an element x in A and a scalar 2, there is e 9 such
that (x)= 2 if and only if 2 e a(x). As an immediate consequence of
the above statements, the C-symmetry of a Banach ,-algebra A with
unit is indeed equivalent to the fact that every self-adjoint element h
in A has a real spectrum.

It is well known that if a C-symmetric Banach ,-algebra A has
no unit, then the Banach ,-algebra A’ obtained by adjunction o a
unit to A is also C-symmetric, and further A is symmetric if and only
if A’ is symmetric (see [7]). Therefore, to prove the theorem, we
may discuss only a C-symmetric Banach ,-algebra with unit. In what
follows, A will always mean a C-symmetric Banach ,-algebra with
unit e. Since A(x) is symmetric for a normal element x in A, the
Gelfand representation of A(x) mentioned above can be extensively

used. The following lemma is elementary, but substantially im-
portant in our treatment.

Lemma 2. If xf---0 in A, then x*x_O.
In fact, the equality e + (x + x*)= (e + x*x)(e + xx*) yields that

e+x*x is invertible. It follows from this that e+fx*x is invertible
for every 20.

Lemma :. The sum of positive elements in A is also positive.

Proof. Following the procedure as in [6; IX, p. 302], our asser-
tion can be reduced to show that for any invertible element x in A, x*x
is positive.)

Now consider the algebra Ao-A(x*x) and the Gelfand represen-
tation a-, of A0 to C(9) as stated in the preceding paragraph.
Having noticed that x*x has the inverse in A0, we define

2) Let a, b be positive elements in A and let 2>0. For 21>0 and 2:>0 such
as 2--21-t-2., a-t-le and b /2e are invertible positive elements, and hence by Lemma
1, there are invertible positive elements c, d such that a-t-le----r, and b+.e--d.
Then

a+bTfe--c+d-c (e+v-d).
Put x--c-d. Then x is invertible and

a(x*x)-- a(dc-1 c-ld)-- a(c-d).
Therefore, a+b+fe is invertible if and only if x*x>_O.
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9- {q e 91(x*x)() >0};
9-{ e 91(x*x)() < 0}.

Then 9-t9 U 9 and further 9, 9 are open and closed in 9. Let
1 ((x,x)_a_ e)

a being a positive element in A0 such that a=(x*x) (use Lemma 1).
Then it is readily verified that p is a projection in A0. Since

((x*x)-a) ((x*x)-a) (e)- 1,

((x,x)_)(a)=
1 on 9((x*x)-a) 1 on

Thus (p)-0 on 9 and (p)= 1 on 9, that is to say, $ is the charac-
teristic function of 9. Here (e p)x*x(e p) 0 and px*xp O.
Therefore, the proof will be completed by showing p-0. Suppose
pC0, i.e., 9 is not empty. Then there is a constant fl0 such that
px*xpgflp, and hence we may assume without loss of generality that

px*xpg q
holds. Since p(x*x)-p is strictly negative in pAop, we may apply
Lemma 1 to it in pAop, and so there is an element h>0 in pAopAo
such that p(x*x)-lp=-h. Let y=pxh. Then py-yp-y and

y*yg --p.
In fact, putting z=xh-pxh, we have z=0, and then by Lemma 2,
z’z- -p-y*yO. Obviously the set B of all elements commuting
with p is a closed .-subalgebra of A, and p belongs to the center of B.
Keeping in mind that pBp is a C-symmetric Banach ,-algebra with
unit p and y e B, and restricting our consideration to pBp, it is possi-
ble to assume that

y*yg --e.
In this case, (y*y)- exists in A(y*y) and it is strictly negative.
Applying Lemma 1 to -(y*y)-, there is a positive element k in A(y*y)
such that (y*y)-=-k. Let u=yk. Then we have

u’u- e and uu* q,
where q is a projection. Put q-e-q and v-uq’, observe that
q’u=O. Then q’v-O, vq’=v and v=0. By Lemma 2, v*vO. But
v’v-q’u*uq’=--q’, which is a contradiction unless q’-0. Thus q= e
and so u is normal. Since A is C-symmetric, u’u--e is impossible.

Now we are in position to prove the theorem. For B*-algebras,
the process of proving the symmetry after having established that
the sum of positive elements is also positive is due to I. Kaplansky.
This algebraic argument seems to be not immediately available or our
case. Here we will present a different treatment for the symmetry.

Proof of Theorem. First we observe that for any element x in A,
r(x*x)-sup{ e a(x*x)},



No. 2] C-Symmetric Banach ,-Algebra 101

r(, ) being the spectral radius. To prove this we may consider only
the case when a(x*x) contains a negative scalar. If this equality does
not hold, then there is 20>0 such that x’x+ 2oe is not invertible and
20a=sup{212 e a(x*x)}. Since the non-zero portions o a(x*x) and
a(xx*) are equal, xx*_<max (a, 0)e 20e. Thus, i x-- h+ ik with sel-
adjoint elements h and k, then, by Lemma 3,

x*x+ 2oe >x*x+ xx*-- h + k2 O,
which is a contradiction.

Suppose that --1 e a(x*x). Then, by what we have observed,
a>_ 1. Now let us split the spectrum 9 of Ao-A(x*x) into three parts
9, 90 and 92, where

9-{ e 91(x*x)/()_-l/2},
92={ e 91(x*x)A()

_
1/2}

and/20 is the complement of 9 U 9., and define the continuous unction

fo on/2 U/22 by
/-6-/2 on tO,

f0()- 1/2/ on 92.
Then, as is well known, there exists a real-valued continuous function

f on/2 such that [If[I [If011 /-6-/2. Since every real valued function
in C(9) can be approximated uniformly by real-valued functions in Ao,
we can select a self-adjoint element k in Ao so that IIf2-]2[[(l/4a.
Then, for e/22, we have

(kx*xk)/k(l)- k2(())(X*X)/k(f)) 1/2a. a 1/2,
and for e 9 U/20,

(kx*xk)(p)( (1 + 6a) /4a. 1/2_< 7/8.
Therefore, as seen above, r(kx*xk)(l. However, for (f0 e/2 such as

(x*x)((f0) 1,
(kx*xk)/(qo) 2(0) (1 6a) /4a _< 5/44 1.

This contradicts r(kx*xk) 1. That is, 1 e a(x*x). Consequently,
we can conclude that x’x+ e is invertible for every element x in A.
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