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Introduction. Let X be a complex Hilbert space with inner
product (., -) and norm |-||. Let L be a selfadjoint (in general un-
bounded) operator on X satisfying
(1) Lf, N=0 for all fe (L),
where 9(L) denotes the domain of L. We shall consider abstract
“hyperbolic” equations of the form

(2) ,ﬁl [0+ o, LIu(t) =0 (t ¢ RY)

(0,=d/dt) with initial data

( 3 ) a{_1u|t=0=§0j € Q(L(Zm—jﬂ)ﬂ)’ j=1’ 2, Tty 2m’

where m is a positive integer and «; are positive constants such that
(4) 0<a<a, <+ <.

In Mizohata [2], we know that there exists a unique solution of
(2),(8) in the class (M &H(DELem-»72)v ([2]; Theorem 5.1). In this

0<j<2m
note, we shall obtain an asymptotic property as t—oo of the solution

under the assumption that the spectrum of L is strongly absolutely
continuous with respect to the Lebesgue measure. As will be seen,
we shall generalize recent results of Shinbrot [4] and Goldstein [1], in
which are treated the case of abstract wave equations (i.e., when
m=1 in (2)).

First we consider the case when the origin 0 is in the resolvent set
of L. 1In this case, applying the method developed by Mizohata [2],
we can construct the explicit formula of the strongly continuous group

2m
{T,; t € R'} of unitary operators in the space [] D(L¢®™-»/%) which assign
J=1

to given initial data (¢,, ¢, - - -, ¢,») the data of corresponding solution
of (2) at time ¢t. For the general case, let L,=1L 4 2n'L'? 4 n=1.
Then, by the limit procedure developed by Goldstein [1], we can deduce
the general case from the special case that L is invertible.

1. Assume first that there exists a positive constant ¢ such that

(5) @Lf, N=elflI*  forall fe DL).

1) u®)e 8{(X) means that «(t) is j times continuously differentiable in ¢ with
values in X.
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We put H=LY?, Then for each >0 integer, 9(H’) is a linear sub-
space of X, and we have

(6) IHf >V ¢S] for all fe D(H).
Equation (2) can be written in the form

(7) o™u+ BLo*u+ - - - + B,L"u=0.

We put

(8) U =U, Uy= atu, ) uzm:agm-lu°

Then it follows from (7) that
U, ‘l 0 1 U,
U 0 .. 1 e Uy

9, ; J’ [ B

Uy, —BnL™ 0 —f, L™ 0... —B,L 0]| u,,

We write this simply as

(9) 0,U)=AU®), U=y, Ugy ++ +, Uyp).?

This equation will be considered as a differential equation in the space
DEH) X DE™) - - - x DH)= [] DEH™), where the domain of
m Jj=1
A is given as 9(A) = ﬁ DH™-1+Y),
i=1

We put X;=9D(H?Y) (X,=X). Then each X, forms a Hilbert space
with norm

IS=1HFl,  fe X,

Thus, in 2]1[” X,n_; is defined the naturally induced norm
J=1

1Flg=] S 170nns] s F= s o

However, we define another norm (energy norm) in this space (cf.,
Mizohata [2]).
We introduce the matrix

HZm-—l

2m-2

(10) EH)= .
e
E(H) maps fl[n X, _; one-to-one onto X*™, and it follows that
j=1
1y E(H)A=PHE(H),
where
0 1
0 1
P= e e
0 1

—Bu 0 —Bmy O0--o —B, 0 -
Since the equation det[y/—P]=0 has the distinet roots y==++a,

2) If M is matrix, !M denotes the transpose of M.
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(G=1,2,...,m) by (4), there exists a non-singular matrix N=(n,,)
such that
12) NP=iDN (i=4—1),
where
+Va;
—va;
D= e
+
—Va,
We introduce the following notation:
13) Tya=+Wa; and r,=—tea, (G=1,2,...,m).
Then N-!is given as follows:
1 1
N‘l—- Tl rz ..... er
G ¢ Gl ¢ e

2m
Now we define in the space [] X,,_; the following new inner
j=1

product
(F, G) yy=(NEH)F, NE(H)G) yom
2m 2m 2m
- jZ‘l (IGZﬂ.anHZm—kfk’ kgankHzm_kgk) .
Then ||F|| 4=(F, F)'} is equivalent to the f-norm. We denote by 4
the Hilbert space with inner product (-, -) 4 and norm |- || 4.

Theorem 1. The operator A, with domain D(A)= ﬁn D(HM-1+Y),
Jj=1

is skew selfadjoint in 9.

Proof. From (11) and (12), it follows that
14 (AF,® 4=GDHNE(H)F, NE(H)G) yin
for any F ¢ 9(4) and G e 4. Note that E(H)H=X*" and E(H)ID(A)
=(9(H))*™. Then since DH is selfadjoint in X*™ with domain (D(H))*",
we see from (14) that A*=—A. q.e.d.

It now follows that A generates a strongly continuous group
{T,=e4*; t € R'} of unitary operator in 4 with the following properties:

(a) T.F isstrongly differentiable in ¢ if and only if F belongs to
9(A), in which case
15) 0,T.F=AT.F,

(b) T, maps 9(A) onto P(4) and commutes with A.

Suppose that F ¢ 9(4), and denote the first component of T.F by
u(t). Then u(t) e P(H™)=9P(L™) and the last component of relation
(15) gives
16) omu=—B,L"u—B, L™ 0~ . .. — B,Lo>™Vy;
that is, u(f) satisfies equation (2).
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From (14), it is not difficult to verify the following two lemmas.
Lemma 1. The j-th component of T,F(F ¢ H) is expressed as

an [T.Fl,= 5 (po)i-ewat 3% Hi-lp,.

Lemma 2. Let p be ;1;:11/ integer sutc-llz that p<2m, and let
18) r;:,j=” S n,Hrg
Then

;‘:’fln,ka-"[TtF]k ‘—I'", forall teR".

We can now prove the following theorem.

Theorem 2. Let L be a selfadjoint operator in X satisfying (5).
Suppose that the spectrum of L is strongly absolutely continuous with
respect to the Lebesgue measure. Then for any &=y, @) - -y Qin)
€ DL™) X P(LEm=D2) - . . X DL, the solution u(t)=I[T,d], of (2),(d
has the following asymptotic pfrope'rties

(20) llmllHP 10]u(®)|*= erklw °re s (G=L.2,...,2m),

where H= Ll/2 and p is any integer such that p<2m.

Proof. Let {EZ; ¢ e R'} and {EZ; g € R'} be the resolutions of the
identity for L and H, respectively. Then since E# =FEZ% for all
o€ R.=(0, ), 0o—~EZf (fe X) is strongly absolutely continuous.

Put @, ,= zin} n;,H?~*¢;. Then noting (13), we have from (17)

19

Her- jaj 1u(t)— Z(’M/ak )j-1{ez~/akmg02k 1,p+( l)j—-le—i‘/akHt ’p}
Thus

|E2~91 (@)= 33 @ (|G pll*+ | P} + T D),
where

J(t)=2Re 7’2 (=1t (e " G, . By )

+2Re Z Z (.\/akal )J 1{(61:(«/ak Va, )Ht¢2k 1,90 ¢2l— ,p)

=1 k<]
+ (B, p» etV =V ””‘_go al, l+( 1)9-1(et V% + Y O Bo—1,p> Pt p)
+ (=1 Ba, ps AT By 1,0)}
For any y=0 real, e“#* is represented as

@1) (etf, g) = j ertd(BEf,g) for f,geX.

Since the scalar measure dm(o) =d(EZYf, g) is absolutely continuous, it
follows from the Riemann-Lebesgue theorem that (21), which is the
Fourier transform of dm(s), tends as t—co to zero. Thus noting (4),
we deduce that lim J(£)=0. q.e.d.

t—oo

Corollary 1. In (20), if we put p=j=1, then it follows that
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2m
(20) limju()|'= 3 %= | H"0]1.

2. Next, for the general case, we can prove the following theo-
rem by the limit procedure (see Goldstein [1]).

Theorem 3. Let L be a selfadjoint operator in X satisfying (1).
Then for any @="4@y, @1 -+, Pam) € DIL™) X DL D) X - - - X YL,
the initial value problem (2),(3) has a unique solution in the class

N EHDLEm-97),  Let T2, ,=| 3 nH™p,| . Then
<ji<2m k=1

2m 2
22) 55 10 HEm gt “ =Ie. .

k=1

Moreover, if the spectrum of L is strongly absolutely continuous with
respect to the Lebesgue measure, then

@3 Hm|H™99u®)|P= 3 |7 f9T8, L (G=1,2, - -, 2m).
t—oo k=1

Proof. Let L,=L+2n'L** 4w, so that LY*=H,=H +n I
(n>0integer). Let u™(¢) be the unique solution of (2) with L replaced
by L, with initial data (8). Then as was shown previously

(23) G-ty ()= % (pymtenmme $5y Fm-tey
k=1 =1

Since
erant — 67‘kt/ne7‘kln ,

as n—oo, 0¥ y™(t) converges in X uniformly on compact intervals to
a necessarily strongly continuous function u,,(t) € D(H) given by

@24) U= 3 (16w 3 Hom 1o,
Let us define the func‘cionks= ;tj(t) (G=1, 21,=~1 -+, 2m—1) inductively as
uy(t) = j :u,+1(s)ds+¢j.
Then u,(t) € D(H*™7*') and as n— oo
iU (t) =J:8§u<"’(s)ds+ @, —1,(2)

uniformly on compact intervals. By definition wu,(t)=0{""u,(t) (j=1,
2,..-,2m). Further since ¢, e PH™7*"), it follows from (24) that
Uy () 18 strongly continuously differentiable and

(25) 0,Uym (D) = 03" u, () = :Zm}l (yu)imerit :Zni N H™ 1,

Since J“e’k’“ fds e 9(H) for all fe X and HJ‘se’k’“ fds=y;{e* ™ f— f}, it
0 0
is not difficult to see, by induction, that
(26) HZm—ja{—lul(t)= :Zi(rk)j-lerkm :Zinll ’anzm_[gD[
and
2m 2m
(27) Hzm—jﬂa{—lul(t): Z (Tk)j—leTkHt Z ’I’l/k[Hzm_ngDt-
k=1 1=1
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Now it follows from (25) and (27) that
Fmu () + 3 B LI Du(t)
Jj=1

2m m am
= 7§1 {Go™+ :él B G )xm= Dyt ; ngHm= 41,

The right member is zero by (12). Hence u,(f) defined above satisfies
(2) and (3). (22) follows immediately from (26). The uniqueness of
solutions is a consequence of (22) and linearity. (23) also follows from
(26) by the same argument as in the proof of Theorem 2. q.e.d.
Corollary 2. In (23), if we put j=1, then it follows that

2m
23y ltimIIHZm“u(t)llz= kZ;lI’%’m,FHd?qu(-
(References are listed at the end of the next article, pp. 271-272.)



