Asymptotic Property of Solutions of Some Higher 62. Order Hyperbolic Equations.

By Kiyoshi Mochizuki Yoshida College, Kyoto University

(Comm. by Kinjirô Kunugi, M. J. A., March 12, 1970)

Introduction. Let X be a complex Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$. Let L be a selfadjoint (in general unbounded) operator on X satisfying

(1)
$$(Lf, f) \ge 0 for all f \in \mathcal{D}(L),$$

where $\mathcal{D}(L)$ denotes the domain of L. We shall consider abstract "hyperbolic" equations of the form

(2)
$$\prod_{j=1}^m [\partial_t^2 + \alpha_j L] u(t) = 0 \ (t \in {\it I\!\!R}^1)$$
 (\$\partial t_t = d/dt\$) with initial data

(3)
$$\partial_t^{j-1}u|_{t=0} = \varphi_j \in \mathcal{D}(L^{(2m-j+1)/2}), \ j=1,2,\cdots,2m,$$

where m is a positive integer and α_j are positive constants such that (4) $0 < \alpha_1 < \alpha_2 < \cdots < \alpha_m$.

In Mizohata [2], we know that there exists a unique solution of (2), (3) in the class $\bigcap_{0 \le j \le 2m} \mathcal{E}_t^j(\mathcal{D}(L^{(2m-j)/2}))^{1)}$ ([2]; Theorem 5.1). In this note, we shall obtain an asymptotic property as $t\rightarrow\infty$ of the solution under the assumption that the spectrum of L is strongly absolutely continuous with respect to the Lebesgue measure. As will be seen, we shall generalize recent results of Shinbrot [4] and Goldstein [1], in which are treated the case of abstract wave equations (i.e., when m=1 in (2)).

First we consider the case when the origin 0 is in the resolvent set of L. In this case, applying the method developed by Mizohata [2], we can construct the explicit formula of the strongly continuous group $\{T_t \, ; \, t \in {\it I\!\!R}^1 \}$ of unitary operators in the space $\prod\limits_{i=1}^{2m} \mathcal{Q}(L^{(2m-j)/2})$ which assign to given initial data $(\varphi_1, \varphi_2, \dots, \varphi_{2m})$ the data of corresponding solution of (2) at time t. For the general case, let $L_n = L + 2n^{-1}L^{1/2} + n^{-2}I$. Then, by the limit procedure developed by Goldstein [1], we can deduce the general case from the special case that L is invertible.

Assume first that there exists a positive constant c such that (5) $(Lf, f) \ge c ||f||^2$ for all $f \in \mathcal{D}(L)$.

¹⁾ $u(t) \in \mathcal{E}_t^j(X)$ means that u(t) is j times continuously differentiable in t with values in X.

We put $H=L^{1/2}$. Then for each $j \ge 0$ integer, $\mathcal{D}(H^j)$ is a linear subspace of X, and we have

(6)
$$||Hf|| \ge \sqrt{c} ||f||$$
 for all $f \in \mathcal{D}(H)$.

Equation (2) can be written in the form

(7)
$$\partial_t^{2m} u + \beta_1 L \partial_t^{2m-2} u + \cdots + \beta_m L^m u = 0.$$

We put

(8)
$$u_1 = u, u_2 = \partial_t u, \dots, u_{2m} = \partial_t^{2m-1} u.$$

Then it follows from (7) that

We write this simply as

(9)
$$\partial_t U(t) = AU(t), \qquad U = {}^t(u_1, u_2, \dots, u_{2m}).^{2}$$

This equation will be considered as a differential equation in the space $\mathcal{D}(H^{2m-1}) \times \mathcal{D}(H^{2m-2}) \times \cdots \times \mathcal{D}(H^0) = \prod_{j=1}^{2m} \mathcal{D}(H^{2m-j}),$ where the domain of A is given as $\mathcal{D}(A) = \prod_{j=1}^{2m} \mathcal{D}(H^{2m-j+1}).$

We put $X_j = \mathcal{D}(H^j)$ $(X_0 = X)$. Then each X_j forms a Hilbert space with norm

$$||f||_{i} = ||H^{j}f||, \quad f \in X_{i}$$

 $\|f\|_j\!=\!\|H^jf\|, \qquad f\in X_j.$ Thus, in $\prod\limits_{j=1}^{2m}X_{2m-j}$ is defined the naturally induced norm $\|F\|_{\widetilde{\mathscr{H}}}\!=\!\Big[\sum\limits_{j=1}^{2m}\|f_j\|_{2m-j}^2\Big]^{1/2}, \quad F\!=^t\!(f_1,f_2,\cdots,f_{2m}).$

$$||F||_{\widetilde{\mathcal{H}}} = \left[\sum_{j=1}^{2m} ||f_j||_{2m-j}^2\right]^{1/2}, \quad F = {}^t(f_1, f_2, \dots, f_{2m}).$$

However, we define another norm (energy norm) in this space (cf., Mizohata [2]).

We introduce the matri

(10)
$$E(H) = \begin{bmatrix} H^{2m-1} & & & \\ & H^{2m-2} & & \\ & & \ddots & \\ & & & H^0 \end{bmatrix}.$$

E(H) maps $\prod_{j=1}^{2m} X_{2m-j}$ one-to-one onto X^{2m} , and it follows that

$$(11) E(H)A = PHE(H)$$

where

Since the equation $\det[\gamma I - P] = 0$ has the distinct roots $\gamma = \pm \sqrt{\alpha_{J}}$

²⁾ If M is matrix, ${}^{t}M$ denotes the transpose of M.

 $(j=1,2,\dots,m)$ by (4), there exists a non-singular matrix $N=(n_{jk})$ such that

(12)
$$NP = iDN \quad (i = \sqrt{-1}),$$

where

$$D\!=\!\left[egin{array}{cccc} +\sqrt{lpha_1} & & & & \ &-\sqrt{lpha_1} & & & \ & \ddots & & \ & +\sqrt{lpha_m} & & \ & & -\sqrt{lpha_m} \end{array}
ight]\!.$$

We introduce the following notation:

(13) $\gamma_{2j-1} = +i\sqrt{\alpha_j}$ and $\gamma_{2j} = -i\sqrt{\alpha_j}$ $(j=1,2,\dots,m)$. Then N^{-1} is given as follows:

$$N^{-1} {=} \left[egin{array}{cccc} 1 & 1 & \cdots & 1 \ \gamma_1 & \gamma_2 & \cdots & \gamma_{2m} \ \cdots & \cdots & \cdots \ \gamma_1^{2m-1} & \gamma_2^{2m-1} & \cdots & \gamma_{2m}^{2m-1} \end{array}
ight].$$

Now we define in the space $\prod_{j=1}^{2m} X_{2m-j}$ the following new inner product

$$(F,G)_{\mathcal{H}} = (NE(H)F, NE(H)G)_{X^{2m}}$$

$$= \sum_{j=1}^{2m} \left(\sum_{k=1}^{2m} n_{jk} H^{2m-k} f_k, \sum_{k=1}^{2m} n_{jk} H^{2m-k} g_k \right).$$

Then $||F||_{\mathcal{H}} = (F, F)_{\mathcal{H}}^{1/2}$ is equivalent to the $\tilde{\mathcal{H}}$ -norm. We denote by \mathcal{H} the Hilbert space with inner product $(\cdot, \cdot)_{\mathcal{H}}$ and norm $||\cdot||_{\mathcal{H}}$.

Theorem 1. The operator A, with domain $\mathcal{D}(A) = \prod_{j=1}^{2m} \mathcal{D}(H^{2m-j+1})$, is skew selfadjoint in \mathcal{H} .

Proof. From (11) and (12), it follows that

(14) $(AF,G)_{\mathcal{H}} = (iDHNE(H)F, NE(H)G)_{X^{2m}}$ for any $F \in \mathcal{D}(A)$ and $G \in \mathcal{H}$. Note that $E(H)\mathcal{H} = X^{2m}$ and $E(H)\mathcal{D}(A) = (\mathcal{D}(H))^{2m}$. Then since DH is selfadjoint in X^{2m} with domain $(\mathcal{D}(H))^{2m}$, we see from (14) that $A^* = -A$.

It now follows that A generates a strongly continuous group $\{T_t = e^{At}; t \in \mathbb{R}^1\}$ of unitary operator in \mathcal{H} with the following properties:

(a) T_tF is strongly differentiable in t if and only if F belongs to $\mathcal{D}(A)$, in which case

$$\partial_t T_t F = A T_t F,$$

(b) T_t maps $\mathcal{D}(A)$ onto $\mathcal{D}(A)$ and commutes with A.

Suppose that $F \in \mathcal{D}(A)$, and denote the first component of $T_t F$ by u(t). Then $u(t) \in \mathcal{D}(H^{2m}) = \mathcal{D}(L^m)$ and the last component of relation (15) gives

(16)
$$\partial_t^{2m} u = -\beta_m L^m u - \beta_{m-1} L^{m-1} \partial_t^2 u - \cdots - \beta_1 L \partial_t^{2(m-1)} u;$$
 that is, $u(t)$ satisfies equation (2).

From (14), it is not difficult to verify the following two lemmas.

Lemma 1. The j-th component of $T_tF(F \in \mathcal{H})$ is expressed as

(17)
$$[T_t F]_j = \sum_{k=1}^{2m} (\gamma_k)^{j-1} e^{\gamma_k H t} \sum_{l=1}^{2m} n_{kl} H^{j-l} f_l.$$

Lemma 2. Let p be any integer such that $p \le 2m$, and let

(18)
$$\Gamma_{p,j}^F = \left\| \sum_{k=1}^{2m} n_{jk} H^{p-k} f_k \right\|^2.$$

Then

(19)
$$\left\| \sum_{k=1}^{2m} n_{jk} H^{p-k} [T_t F]_k \right\|^2 = \Gamma_{p,j}^F \quad for \ all \ t \in \mathbb{R}^1.$$

We can now prove the following theorem.

Theorem 2. Let L be a selfadjoint operator in X satisfying (5). Suppose that the spectrum of L is strongly absolutely continuous with respect to the Lebesgue measure. Then for any $\Phi = {}^t(\varphi_1, \varphi_2, \dots, \varphi_{2m}) \in \mathcal{D}(L^m) \times \mathcal{D}(L^{(2m-1)/2}) \times \dots \times \mathcal{D}(L^{1/2})$, the solution $u(t) = [T_t \Phi]_1$ of (2), (3) has the following asymptotic properties:

(20)
$$\lim_{t\to\infty} ||H^{p-j}\partial_t^{j-1}u(t)||^2 = \sum_{k=1}^{2m} |\gamma_k|^{2(j-1)} \Gamma_{p,k}^{\emptyset} \ (j=1,2,\cdots,2m),$$

where $H=L^{1/2}$ and p is any integer such that $p \le 2m$.

Proof. Let $\{E_{\sigma}^L; \sigma \in \mathbf{R}^1\}$ and $\{E_{\sigma}^H; \sigma \in \mathbf{R}^1\}$ be the resolutions of the identity for L and H, respectively. Then since $E_{\sigma}^H = E_{\sigma^2}^L$ for all $\sigma \in \mathbf{R}_+^1 = (0, \infty)$, $\sigma \to E_{\sigma}^H f$ $(f \in X)$ is strongly absolutely continuous.

Put
$$\tilde{\varphi}_{j,p} = \sum_{k=1}^{2m} n_{jk} H^{p-k} \varphi_k$$
. Then noting (13), we have from (17)

$$H^{p-j} \widehat{\partial}_t^{j-1} u(t) = \sum_{k=1}^m (i \sqrt{\alpha_k})^{j-1} \{ e^{i \sqrt{\alpha_k} H t} \widetilde{\varphi}_{2k-1, \, p} + (-1)^{j-1} e^{-i \sqrt{\alpha_k} H t} \widetilde{\varphi}_{2k, \, p} \}.$$

Thus

$$\|H^{p-j}\partial_t^{j-1}u(t)\|^2 = \sum_{k=1}^m \alpha_k^{j-1}\{\|\tilde{\varphi}_{2k-1,p}\|^2 + \|\tilde{\varphi}_{2k,p}\|^2\} + J(t),$$

where

$$\begin{split} J(t) = & 2 \mathrm{Re} \sum_{k=1}^{m} (-1)^{j-1} \alpha_{k}^{j-1} (e^{i2^{\sqrt{\alpha_{k}}}Ht} \tilde{\varphi}_{2k-1,p}, \tilde{\varphi}_{2k,p}) \\ & + 2 \mathrm{Re} \sum_{l=1}^{m} \sum_{k < l} (\sqrt{\alpha_{k} \alpha_{l}})^{j-1} \{ (e^{i(\sqrt{\alpha_{k}} - \sqrt{\alpha_{l}})Ht} \tilde{\varphi}_{2k-1,p}, \tilde{\varphi}_{2l-1,p}) \\ & + (\tilde{\varphi}_{2k,p}, e^{i(\sqrt{\alpha_{k}} - \sqrt{\alpha_{l}})Ht} \tilde{\varphi}_{2l,p}) + (-1)^{j-1} (e^{i(\sqrt{\alpha_{k}} + \sqrt{\alpha_{l}})Ht} \tilde{\varphi}_{2k-1,p}, \tilde{\varphi}_{2l,p}) \\ & + (-1)^{j-1} (\tilde{\varphi}_{2k,p}, e^{i(\sqrt{\alpha_{k}} + \sqrt{\alpha_{l}})Ht} \tilde{\varphi}_{2l-1,p}) \}. \end{split}$$

For any $\gamma \neq 0$ real, $e^{i\gamma Ht}$ is represented as

$$(21) (e^{i\gamma Ht}f,g) = \int e^{i\gamma\sigma t}d(E_{\sigma}^{H}f,g) \text{for } f,g \in X.$$

Since the scalar measure $dm(\sigma) = d(E_{\sigma}^H f, g)$ is absolutely continuous, it follows from the Riemann-Lebesgue theorem that (21), which is the Fourier transform of $dm(\sigma)$, tends as $t \to \infty$ to zero. Thus noting (4), we deduce that $\lim J(t) = 0$.

Corollary 1. In (20), if we put p=j=1, then it follows that

(20)'
$$\lim_{t\to\infty} ||u(t)||^2 = \sum_{k=1}^{2m} \Gamma_{1,k}^{\phi} = ||H^{-2m+1}\Phi||_{\mathcal{H}}^2.$$

2. Next, for the general case, we can prove the following theorem by the limit procedure (see Goldstein [1]).

Theorem 3. Let L be a selfadjoint operator in X satisfying (1). Then for any $\Phi = {}^{t}(\varphi_1, \varphi_2, \dots, \varphi_{2m}) \in \mathcal{D}(L^m) \times \mathcal{D}(L^{(2m-1)/2}) \times \dots \times \mathcal{D}(L^{1/2})$, the initial value problem (2), (3) has a unique solution in the class

$$\bigcap_{0 \le j \le 2m} \mathcal{E}_{t}^{j}(\mathcal{D}(L^{(2m-j)/2})). \quad Let \ \Gamma_{2m,j}^{\emptyset} = \left\| \sum_{k=1}^{2m} n_{jk} H^{2m-k} \varphi_{k} \right\|^{2}. \quad Then$$

$$(22) \quad \left\| \sum_{k=1}^{2m} n_{jk} H^{2m-k} \partial_{t}^{k-1} u(t) \right\|^{2} = \Gamma_{2m,j}^{\emptyset}.$$

Moreover, if the spectrum of L is strongly absolutely continuous with respect to the Lebesgue measure, then

(23)
$$\lim_{t\to\infty} ||H^{2m-j}\partial_t^{j-1}u(t)||^2 = \sum_{k=1}^{2m} |\gamma_k|^{2(j-1)} \Gamma_{2m,k}^{\phi} \ (j=1,2,\cdots,2m).$$

Proof. Let $L_n = L + 2n^{-1}L^{1/2} + n^{-2}I$, so that $L_n^{1/2} \equiv H_n = H + n^{-1}I$ (n > 0 integer). Let $u^{(n)}(t)$ be the unique solution of (2) with L replaced by L_n with initial data (3). Then as was shown previously

(23)
$$\partial_t^{2m-1} u^{(n)}(t) = \sum_{k=1}^{2m} (\gamma_k)^{2m-1} e^{\tau_k H_n t} \sum_{l=1}^{2m} n_{kl} H_n^{2m-l} \varphi_l.$$

Since

$$e^{\tau_{k}H_{n}t} = e^{\tau_{k}t/n}e^{\tau_{k}Ht}$$

as $n\to\infty$, $\partial_t^{2m-1}u^{(n)}(t)$ converges in X uniformly on compact intervals to a necessarily strongly continuous function $u_{2m}(t)\in\mathcal{D}(H)$ given by

(24)
$$u_{2m}(t) = \sum_{k=1}^{2m} (\gamma_k)^{2m-1} e^{\gamma_k H t} \sum_{l=1}^{2m} n_{kl} H^{2m-l} \varphi_l.$$

Let us define the functions $u_j(t)$ $(j=1,2,\cdots,2m-1)$ inductively as

$$u_{j}(t) = \int_{0}^{t} u_{j+1}(s) ds + \varphi_{j}.$$

Then $u_j(t) \in \mathcal{D}(H^{2m-j+1})$ and as $n \to \infty$

$$\partial_t^{j-1}u^{(n)}(t) = \int_0^t \partial_s^j u^{(n)}(s)ds + \varphi_j \rightarrow u_j(t)$$

uniformly on compact intervals. By definition $u_j(t) = \partial_i^{j-1} u_1(t)$ $(j=1, 2, \dots, 2m)$. Further since $\varphi_j \in \mathcal{D}(H^{2m-j+1})$, it follows from (24) that $u_{2m}(t)$ is strongly continuously differentiable and

(25)
$$\partial_t u_{2m}(t) \equiv \partial_t^{2m} u_1(t) = \sum_{k=1}^{2m} (\gamma_k)^{2m} e^{\gamma_k H t} \sum_{l=1}^{2m} n_{kl} H^{2m-l+1} \varphi_l.$$

Since $\int_0^t e^{r_k H s} f ds \in \mathcal{D}(H)$ for all $f \in X$ and $H \int_0^t e^{r_k H s} f ds = \gamma_k^{-1} \{e^{r_k H t} f - f\}$, it is not difficult to see, by induction, that

(26)
$$H^{2m-j}\partial_t^{j-1}u_1(t) = \sum_{k=1}^{2m} (\gamma_k)^{j-1}e^{\gamma_k Ht} \sum_{l=1}^{2m} n_{kl}H^{2m-l}\varphi_l$$

and

(27)
$$H^{2m-j+1}\partial_t^{j-1}u_1(t) = \sum_{k=1}^{2m} (\gamma_k)^{j-1}e^{r_kHt} \sum_{l=1}^{2m} n_{kl}H^{2m-l+1}\varphi_l.$$

Now it follows from (25) and (27) that

$$\begin{split} \partial_t^{2m} u_1(t) + \sum_{j=1}^m \beta_j L^j \partial_t^{2(m-j)} u_1(t) \\ = \sum_{k=1}^{2m} \{ (\gamma_k)^{2m} + \sum_{j=1}^m \beta_j (\gamma_k)^{2(m-j)} \} e^{\gamma_k H t} \sum_{l=1}^{2m} n_{kl} H^{2m-l+1} \varphi_l. \end{split}$$

The right member is zero by (12). Hence $u_1(t)$ defined above satisfies (2) and (3). (22) follows immediately from (26). The uniqueness of solutions is a consequence of (22) and linearity. (23) also follows from (26) by the same argument as in the proof of Theorem 2. q.e.d.

Corollary 2. In (23), if we put j=1, then it follows that

(23)'
$$\lim_{t\to\infty} ||H^{2m-1}u(t)||^2 = \sum_{k=1}^{2m} \Gamma_{2m,k}^{\phi} = ||\Phi||_{\mathcal{H}}^2.$$

(References are listed at the end of the next article, pp. 271-272.)