58. Boundary Value Problems for Some Degenerate Elliptic Equations of Second Order with Dirichlet Condition

By Akira Nakaoka
(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1970)

1. Introduction. Let Ω be a domain in R^{n} whose boundary is a smooth and compact hypersurface. We deal with the following differential operator defined in Ω :

$$
\begin{equation*}
A_{\rho}(x, D)=-\rho(r) \sum_{j, k=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{j k}(x) \frac{\partial}{\partial x_{k}}\right)+\sum_{j=1}^{n} b_{j}(x) \frac{\partial}{\partial x_{j}}+c(x) \tag{1.1}
\end{equation*}
$$

where r denots the distance from $x \in \bar{\Omega}$ to Γ, the boundary of Ω, and we assume that

$$
\begin{equation*}
\sum_{j, k=1}^{n} a_{j k}(x) \xi_{j} \xi_{k} \geqq \delta|\xi|^{2} \quad \text { for any real } n \text {-vector } \xi \quad\left(a_{j k}=\bar{a}_{k j}\right) \tag{1.2}
\end{equation*}
$$ and $\rho(t)\left(t \in \bar{R}_{+}^{1}\right)$ satisfies

1) $\rho(t) \in C^{0}\left(\bar{R}_{+}^{1}\right) \cap C^{2}\left(R_{+}^{1}\right)$ and $0 \leqslant \rho(t)$ with $\rho(t)=0$ only at $t=0$
2) $\rho(t)^{-1}$ is integrable in $(0, s)$ for any $s \geqq 0$, and $\rho^{\prime \prime}(t) \leqq 0$ near $t=0$
3) $\left|\rho^{\prime}(t)\right| \leqq C_{1} t^{\alpha-1}$ and $\left|\rho^{\prime \prime}(t)\right| \leqq C_{2} t^{\alpha-2}(0<\alpha<1)$ near $t=0$
4) $\int_{0}^{a} t^{2 \alpha-2} \int_{0}^{t} \rho(s)^{-1} d s d t$ and $\int_{0}^{a} \rho^{\prime}(t) \rho(t)^{-1} \int_{0}^{t} \rho(s)^{-1} d s d t$ are finite for any $a>0$ and if Ω is unbounded, we assume moreover
5) when $t \rightarrow \infty, 0<K \leqq \rho(t)$ and $\rho^{\prime}(t), \rho^{\prime \prime}(t)$ remain bounded.

If we take a function to be equal to t^{α} near $t=0$ as $\rho(t)$, we can see easily that it satisfies the above conditions.

For the coefficients of $A_{\rho}(x, D)$, we assume that $a_{j k}(x)$ and $b_{j}(x)$ are all in $\mathcal{B}^{1}(\bar{\Omega})$, and $c(x)$ in $C^{0}(\Omega)$ with $|c(x)| \leqq M\left|\rho^{\prime}(r)\right| \rho(r)^{-1}$ near Γ, and if Ω is unbounded, we assume that $c(x)$ remains bounded as $|x| \rightarrow \infty$.

Now let us introduce some Hilbert spaces in which we develop our arguments.

Definition 1.1. We say $u(x)$ belongs to $L^{2}\left(\Omega, \rho^{-1}\right)$ if and only if

$$
\begin{equation*}
\|u\|_{0, \rho-1}^{2}=\int_{\Omega}|u(x)|^{2} \rho(r)^{-1} d x \tag{1.3}
\end{equation*}
$$

is finite.
Definition 1.2. $u(x)$ is said to be in $H^{m}(\Omega, \rho)$, if and only if

$$
\begin{equation*}
\|u\|_{m, \rho}^{2}=\int_{\Omega}\left(\rho(r) \sum_{|\alpha|=2}\left|D^{\alpha} u\right|^{2}+|u|^{2}\right) d x \tag{1.4}
\end{equation*}
$$

is finite.
One of our main results is
Theorem 1.1. Under the conditions stated above, the equation

$$
\left\{\begin{array}{l}
A_{\rho}(x, D) u+\lambda u=f(x) \tag{1.5}\\
\left.u\right|_{\Gamma}=0
\end{array}\right.
$$

admits a unique solution $u(x)$ in $H^{2}(\Omega, \rho) \cap \mathscr{D}_{L^{2}}^{1}(\Omega)$ for any given $f(x)$ in $L^{2}\left(\Omega, \rho^{-1}\right)$, if $\lambda>0$ is sufficiently large.

For the adjoint equation, we have
Theorem 1.2. The same result as Theorem 1.1 is valid for

$$
\left\{\begin{array}{c}
A_{\rho}^{*}(x, D) v+\lambda v=g(x) \tag{1.6}\\
\left.v\right|_{r}=0,
\end{array}\right.
$$

where $A_{\rho}^{*}(x, D)$ stands for the formal adjoint operator of $A_{\rho}(x, D)$ with respect to the inner product of $L^{2}\left(\Omega, \rho^{-1}\right)$.

If Ω is bounded, we can see that the Fredholm alternative theorem holds.

In Section 4 we make mention of the application of our results to the mixed problems for the hyperbolic equations of second order.
2. Weak solution. We solve (1.5) by the so-called variational method. For this we prepare some lemmas.

Lemma 2.1. If $u(x)$ belongs to $H^{1}(\Omega, \rho)$, then the trace of $u(x)$ to Γ exists and it holds for any positive ε

$$
\begin{equation*}
\|u\|_{\Gamma} \leqq \varepsilon\|u\|_{1, \rho}+C(\varepsilon)\|u\|_{0} \tag{2.1}
\end{equation*}
$$

where $\|u\|_{\Gamma}$ means the $L^{2}\left(\Gamma^{\prime}\right)$ norm of the trace of $u(x)$.
Lemma 2.2. Let $u(x)$ be in $H^{2}(\Omega, \rho)$, then the traces of $D_{j} u(x)$ exist and it holds for any positive ε

$$
\begin{equation*}
\left\|D_{j} u\right\|_{\Gamma} \leqq \varepsilon\|u\|_{2, \rho}+C(\varepsilon)\|u\|_{0}, \quad(j=1, \cdots, n) \tag{2.2}
\end{equation*}
$$

Lemma 2.3. Suppose $u(x) \in H^{2}(\Omega, \rho)$, then $u(x) \in H^{1}(\Omega)$ and it holds for any positive ε

$$
\begin{equation*}
\|u\|_{1} \leqq \varepsilon\|u\|_{2, \rho}+C(\varepsilon)\|u\|_{0} . \tag{2.3}
\end{equation*}
$$

Lemma 2.4. Let $u(x)$ and $v(x)$ be in $\mathscr{D}_{L^{2}}^{1}(\Omega)$, then for any positive ε

$$
\begin{equation*}
\int_{\Omega} \rho^{\prime}(r) \rho(r)^{-2}|u v| d x \leqq \varepsilon\left(\|u\|_{1}^{2}+\|v\|_{1}^{2}\right)+C(\varepsilon)\left(\|u\|_{0}^{2}+\|v\|_{0}^{2}\right) \tag{2.4}
\end{equation*}
$$

holds.
Lemma 2.5. Let $u(x)$ and $v(x)$ be in $\mathscr{D}_{L_{2}^{2}}^{1}(\Omega)$, then for any first order differential operator D, we obtain with an arbitrary positive ε

$$
\begin{equation*}
\left|(D u, v)_{\rho-1}\right| \leqq \varepsilon\left(\|u\|_{1}^{2}+\|v\|_{1}^{2}\right)+C(\varepsilon)\|v\|_{0, \rho-1}^{2} \tag{2.5}
\end{equation*}
$$

where (, $)_{\rho-1}$ denotes the inner product of $L^{2}\left(\Omega, \rho^{-1}\right)$.
The final lemma is
Lemma 2.6. If $u(x)$ is in $\mathscr{D}_{L^{2}}^{1}(\Omega)$, then we have

$$
\begin{gather*}
\|u\|_{0} \leqq C\|u\|_{0, \rho-1} \tag{2.6}\\
\|u\|_{0, \rho-1} \leqq \varepsilon\|u\|_{1}+C(\varepsilon)\|u\|_{0} \tag{2.7}
\end{gather*}
$$

where ε is an arbitrary positive number.
Now let us define the weak solution of (1.5).
Definition 2.1. We say $u(x)$ in $\mathscr{D}_{L^{2}}^{1}(\Omega)$ a weak solution of (1.5), if $u(x)$ satisfies for all $v(x)$ in $\mathscr{D}_{L^{2}}^{1}(\Omega)$

$$
\begin{align*}
B[u, v]=\sum_{j, k=1}^{n}\left(a_{j k} \frac{\partial u}{\partial x_{k}}\right. & \left., \frac{\partial u}{\partial x_{j}}\right)+\sum_{j=1}^{n}\left(b_{j} \frac{\partial u}{\partial x_{j}}, v\right)_{\rho-1} \tag{2.8}\\
& +(c u, v)_{\rho-1}+\lambda(u, v)_{\rho-1}=\langle f, \bar{v}\rangle .
\end{align*}
$$

That $B[u, v]$ is well-defined follows from Lemma 2.4, Lemma 2.5 and Lemma 2.6, and using these lemmas again, we obtain

Proposition 2.1. Let $u(x)$ and $v(x)$ be in $\mathscr{D}_{L^{2}}^{1}(\Omega)$, then it holds

$$
\begin{equation*}
|B[u, v]| \leqq C\|u\|_{1}\|v\|_{1} \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\text { if } \lambda>0 \text { is large enough. } \tag{2.10}
\end{equation*}
$$

Thus by virtue of the well-known lemma of Lax-Milgram, we have
Theorem 2.1. If $\lambda>0$ is sufficiently large, then (1.5) has a unique weak solution for any $f(x)$ such that $\rho(r)^{-1} f(x)$ lies in $\mathscr{D}_{L^{2}}^{1}(\Omega)^{\prime}$, especially for any $f(x)$ in $L^{2}\left(\Omega, \rho^{-1}\right)$.
3. Differentiability theorem. In this section we are concerned with the differentiability of the weak solution of (1.5). Since the question is local, we take $R_{+}^{n}=\left\{(x, y) ; x>0\right.$ and $\left.y \in R^{n-1}\right\}$ as Ω, and we may assume $\rho^{\prime \prime}(x) \leqq 0$ over R_{+}^{1} without loss of generality.

Lemma 3.1. Let $u(x, y) \in C_{0}^{\infty}\left(R_{+}^{n}\right)$ and $v(x, y) \in \mathscr{D}_{L^{2}}^{1}\left(R_{+}^{n}\right)$, then it holds

$$
\begin{equation*}
\left(\rho(x) u_{x x}, v\right)=\left(\rho^{\prime \prime}(x) u, v\right)-\left(\rho(x) u_{x}, v_{x}\right) \tag{3.1}
\end{equation*}
$$

Thus passing to limit, we obtain
Lemma 3.2. If $u(x, y)$ is in $\mathscr{D}_{L^{2}}^{1}\left(R_{+}^{n}\right)$, then it follows

$$
\begin{equation*}
\left\langle\rho(x) u_{x x}, \bar{u}\right\rangle=\left(\rho^{\prime \prime}(x) u, u\right)-\left(\rho(x) u_{x}, u_{x}\right) \tag{3.2}
\end{equation*}
$$

Lemma 3.3. Let $u(x, y)$ be in $\mathscr{D}_{L_{2}}^{1}\left(R_{+}^{n}\right)$, then we have with any $\varepsilon>0$

$$
\begin{equation*}
\|u\|_{0, \rho-1} \leqq \varepsilon\|u\|_{1, \rho}+C(\varepsilon)\|u\|_{o} . \tag{3.3}
\end{equation*}
$$

Lemma 3.4. Let $u(x, y)$ be in $\mathscr{D}_{L^{2}}^{1}\left(R_{+}^{n}\right)$, then it holds

$$
\begin{equation*}
\left|\left(\rho^{\prime}(x) \rho(x)^{-1} u, u\right)\right|, \quad|(D u, u)| \leqq \varepsilon\|u\|_{1, \rho}^{2}+C(\varepsilon)\|u\|_{0}^{2}, \tag{3.4}
\end{equation*}
$$ where ε is an arbitrary positive number and D stands for an arbitrary first order differential operator.

Let us denote by Σ_{δ} the hemi-sphere of radius δ with its centre the origin: $\quad \Sigma_{\delta}=\left\{(x, y) ; x^{2}+|y|^{2}<\delta^{2}\right.$ and $\left.x>0\right\}$.

Lemma 3.5 (Poincaré). Let $u(x, y)$ be in $\mathscr{D}_{L^{2}}^{1}\left(R_{+}^{n}\right) \cap \mathcal{E}^{\prime}\left(\Sigma_{\dot{\delta}}\right)$, then it holds

$$
\begin{equation*}
\|u\|_{0, \rho-1}^{2} \leqq C(\delta)\left\{\sum_{j=1}^{n-1} \int_{R_{+}^{n}} \rho(x)\left|\frac{\partial u}{\partial y_{j}}\right|^{2} d x d y+\int_{R_{+}^{n}} \rho(x)\left|\frac{\partial u}{\partial x}\right|^{2} d x d y\right\} \tag{3.5}
\end{equation*}
$$

where $C(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.
Take δ sufficiently small, then we may assume that our concerning operator is of the form in Σ_{δ}

$$
\begin{equation*}
A_{\rho}=-\rho(x)\left\{\frac{\partial}{\partial x}\left(\tilde{a}_{00} \frac{\partial}{\partial x}\right)+\sum_{j, k=1}^{n-1} \frac{\partial}{\partial y_{j}}\left(\tilde{a}_{j k} \frac{\partial}{\partial y_{k}}\right)\right\} \tag{3.6}
\end{equation*}
$$

+ first order operator,
after a suitable local transformation of independent variables, and we may assume, by virtue of (1.2),

$$
\begin{align*}
& \sum_{j, k=1}^{n-1} \widetilde{a}_{j k} \eta_{j} \eta_{k} \geqq c|\eta|^{2} \text { for any } \eta \in R^{n-1} \tag{3.7}\\
& \qquad\left(\tilde{a}_{00} \geqq d>0, c>0 \text { and } \widetilde{a}_{j k}=\overline{\widetilde{a}}_{k j}\right) .
\end{align*}
$$

The following lemma is obvious.
Lemma 3.6. For any $u(x, y)$ in $\mathscr{D}_{L^{2}}^{1}\left(R_{+}^{n}\right)$, it follows

$$
\begin{equation*}
-\left\langle\rho(x) \sum_{j, k=1}^{n-1} \frac{\partial}{\partial y_{j}}\left(a_{j k} \frac{\partial u}{\partial y_{k}}\right), \bar{u}\right\rangle \geqq c \int_{R_{+}^{n}} \rho(x) \sum_{j=1}^{n-1}\left|\frac{\partial u}{\partial y_{j}}\right|^{2} d x d y . \tag{3.8}
\end{equation*}
$$

Let us denote

$$
B_{\delta}=\left\{(x, y) ; x^{2}+|y|^{2}<\delta^{2}\right\}
$$

and take an arbitrary real-valued function $\beta(x, y)$ belonging to $C_{0}^{\infty}\left(B_{0}\right)$.
Now let $u(x, y)$ be a weak solution of (1.5) with $\Omega=R_{+}^{n}$ and let $f(x, y)$ be in $L^{2}\left(R_{+}^{n}, \rho^{-1}\right)$, then we see

$$
\begin{equation*}
A_{\rho} u=f-\lambda u \tag{3.9}
\end{equation*}
$$

as a distribution, and multiplying $\beta(x, y)$ to both sides we obtain

$$
\begin{equation*}
A_{\rho}(\beta u)=\beta(f-\lambda u)-\left[\beta, A_{\rho}\right] u . \tag{3.10}
\end{equation*}
$$

Lemma 3.7. For any $u(x, y)$ in $\mathscr{D}_{L^{2}}^{1}\left(R_{+}^{n}\right)$, we have $\left[\beta, A_{\rho}\right] u$ $\in L^{2}\left(R_{+}^{n}, \rho^{-1}\right)$.

Put $\beta u=v$ and $\beta(f-\lambda u)-\left[\beta, A_{\rho}\right] u=g$, then by Lemma 3.7 we have

$$
\begin{equation*}
A_{\rho} v=g \tag{3.11}
\end{equation*}
$$

where $v \in \mathscr{D}_{L^{2}}^{1}\left(R_{+}^{n}\right) \cap \mathcal{E}^{\prime}\left(\Sigma_{\dot{\delta}}\right)$ and $g \in L^{2}\left(\Sigma_{\dot{\delta}}, \rho^{-1}\right)$.
We denote by $H_{0}^{m}\left(\Sigma_{\delta}, \rho\right)$ the completion of $C_{0}^{\infty}\left(\Sigma_{\delta}\right)$ in $H^{m}\left(\Sigma_{\delta}, \rho\right)$ and denote by $H_{0}^{-m}\left(\Sigma_{\delta}, \rho\right)$ its dual space, which is a space of distribution.

Lemma 3.8. If $u(x, y)$ is in $\mathscr{D}_{L_{2}}^{1}\left(\Sigma_{\delta}\right)$, then $A_{\rho} u$ is in $H_{0}^{-1}\left(\Sigma_{\delta}, \rho\right)$.
The following proposition is essential in this section.
Proposition 3.1. If δ is sufficiently small, then for any $u(x, y)$ in $\mathscr{D}_{L^{2}}^{1}\left(\Sigma_{\delta}\right)$ we get

$$
\begin{equation*}
\left\|A_{\rho} u\right\|_{-1, \rho} \geqq c\|u\|_{1, \rho}, \tag{3.12}
\end{equation*}
$$

where $\left\|A_{\rho} u\right\|_{-1, \rho}$ denotes the $H_{0}^{-1}\left(\Sigma_{\delta}, \rho\right)$ norm of $A_{\rho} u$.
Proof. By Lemma 3.2, Lemma 3.4 and Lemma 3.6, we have

$$
\begin{equation*}
\operatorname{Re}\left\langle A_{\rho} u, \bar{u}\right\rangle \geqq c\|u\|_{1, \rho}^{2}-K\|u\|_{0}^{2}, \tag{3.13}
\end{equation*}
$$

and by virtue of Lemma 3.5, we obtain

$$
\begin{equation*}
\operatorname{Re}\left\langle A_{\rho} u, \bar{u}\right\rangle \geqq c^{\prime}\|u\|_{1, \rho} . \tag{3.14}
\end{equation*}
$$

Hence with the aid of Lemma 3.8, we can complete the proof.
Lemma 3.9. If $f(x, y)$ is in $L^{2}\left(R_{+}^{n}, \rho\right)$ then the difference quotients $\quad h^{-1}\left(f\left(x, y_{1}, \cdots, y_{j-1}, y_{j}+h, y_{j+1}, \cdots, y_{n-1}\right)-f(x, y)\right)(1 \leqslant j \leqslant n$ -1) converge to $\frac{\partial f}{\partial y_{j}}$ in $H_{0}^{-1}\left(R_{+}^{n}, \rho\right)$.

Thus applying Proposition 3.1 to v in (3.11) and using Lemma 3.9, we applying Proposition 3.1 to v in (3.11) and using Lemma 3.9, we can prove

Theorem 3.1. If $u(x, y) \in \mathscr{D}_{L^{2}}^{1}\left(R_{+}^{n}\right)$ satisfies $A_{\rho} u=f$ with $f \in L^{2}\left(R_{+}^{n}, \rho^{-1}\right)$, then $u(x, y)$ belongs to $H^{2}\left(R_{+}^{n}, \rho\right)$.

Corollary 3.1. If $u(x) \in \mathscr{D}_{L^{2}}^{1}(\Omega)$ satisfies $A_{\rho} u=f$ with $f \in L^{2}\left(\Omega, \rho^{-1}\right)$, then $u(x)$ belongs to $H^{2}(\Omega, \rho)$.
4. Application to mixed problems for hyperbolic equations. In
this section we state an application of the results obtained in the previous sections to the mixed problems for hyperbolic equations

$$
\left\{\begin{array}{l}
u_{t t}=A_{\rho} u+f(t, x) \quad \text { in }(0, T) \times \Omega \tag{4.1}\\
u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x) \\
\left.u(t, x)\right|_{T}=0 \quad \text { on }[0, T) \times \Gamma
\end{array}\right.
$$

We can show that (4.1) is well-posed in the following sense:
Theorem 4.1. Let $b_{j}(x)(j=1, \cdots, n)$ be all zero, then for any $f(t, x) \in \mathcal{E}_{t}^{1}\left(L^{2}\left(\Omega, \rho^{-1}\right)\right)$ and for any $\left(u_{0}, u_{1}\right) \in H^{2}(\Omega, \rho) \cap \mathscr{D}_{L^{2}}^{1}(\Omega) \times \mathscr{D}_{L^{2}}^{1}(\Omega)$, there exists a unique solution $u(t, x)$ of (4.1) such that ($u, u_{t}, u_{t t}$) is continuous in $H^{2}(\Omega, \rho) \times H^{1}(\Omega) \times L^{2}\left(\Omega, \rho^{-1}\right)$, and the energy estimate

$$
\begin{gathered}
\|u(t)\|_{2, \rho}+\left\|u_{t}(t)\right\|_{1}+\left\|u_{t t}(t)\right\|_{0, \rho-1} \leqq C(T)\left(\left\|u_{0}\right\|_{2, \rho}+\left\|u_{1}\right\|_{1}+\|f(0)\|_{0, \rho-1}\right. \\
\left.\quad+\int_{0}^{t}\left(\|f(s)\|_{0, \rho-1}+\left\|f^{\prime}(s)\right\|_{0, \rho-1}\right) d s\right)
\end{gathered}
$$

holds for any $t \in[0, T]$.
The more detailed exposition including the related topics will be published elsewhere.

References

[1] S. Mizohata: Quelques problèmes au bord, du type mixte, pour des equations hyperboliques. Collége de France, 23-66 (1966-67).
[2] -: Theory of Partial Differential Equations. Iwanami (1965) (in Japanese).
[3] A. Nakaoka: Mixed problems for degenerate hyperbolic equations of second order. Proc. Japan Acad., 45, 706-709 (1969).
[4] -: On Dirichlet problems for some degenerate elliptic equations (to appear).
[5] K. Yosida: An operator theoretical integration of the wave equations. J. Math. Soc. Japan, 8, 77-92 (1956).

